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Chapter 1

Introduction

The modeling of physical systems using mathematical terms plays an important role in
scientific research. For a long time, this modeling was essentially restricted to analytically
solvable models. Since the advent of computers, numerical simulations have facilitated the
solution of increasingly complex models. These computer experiments with a simulated
physical system are typically much less demanding in resources, time and effort than real
experiments. When dealing with objects of the quantum world, however, classical computers
face a severe challenge, termed the “exponential explosion” [1] or “exponential wall” [2]: the
number of classical bits required to represent a quantum system increases exponentially with
system size, rendering the direct simulation of large quantum systems (or even the storage of
the state of such systems) intractable.

Fortunately, the comprehensive knowledge of all degrees of freedom of a quantum many-body
system is not required in general. The formulation of concise research questions necessitates a
narrowing down of attention on a small subset of the entirety of degrees of freedom, whose
properties are to be investigated. This raises the notion of an open quantum system [3–5]:
the few degrees of freedom of interest are defined as the system, which interacts with an
environment consisting of the remaining degrees of freedom. Since the system dynamics
represents the desired quantum dynamics, only the properties of the environment which affect
the system dynamics are required to simulate the system. Such properties may include, inter
alia, environment temperature or environment memory. (An environment is said to have
memory or to be “non-Markovian” if its effect on the system depends on previous system
dynamics.) Nevertheless, due to the unaltered exponential explosion in the system degrees of
freedom and the immense numerical challenges in efficiently treating complex non-Markovian
environments, numerical simulations of large open quantum systems remain largely inaccessible
to classical computers.
Alternatives to numerical simulations of open quantum systems are thus called for. One

means follows naturally from the open quantum system notion that the details of the en-
vironment do not matter, but only its effective action on the system: this gives rise to the
possibility that the relevant environment properties can be realized using different physical
implementations. Emulating the dynamics of one quantum system with another one is the
central idea behind quantum simulation.
Quantum simulators mimic a less controllable or accessible target system by means of a

more controllable or accessible counterpart [1, 6, 7]. They are needed whenever experimental
or numerical investigation of the quantum system of interest is impeded by, for instance, lack
of controllability or system size respectively. Their task is to implement the evolution of the
target system using the simulator system, which requires that the Hamiltonians typically
specifying the evolution of each system can be mapped onto one another. This ‘quantum
simulation by emulation’ is often referred to as analog quantum simulation, as opposed to
digital quantum simulation, where the evolution of a quantum system is reproduced by
implementing unitary operators on the simulator via universal quantum gates [8]. Different
platforms have been proposed for analog quantum simulation, such as neutral atoms, ions,
and superconducting circuits, which can simulate, for example, condensed-matter spin models,
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Figure 1.1: Schematic of the nested environment structure harnessed for reservoir engineering through-
out this thesis. The system of interest is coupled to a finite environment part, which in turn is coupled
to a macroscopic environment part. The environment can be controlled via the finite part, whose
dynamics can be tuned.

disordered systems, and open quantum systems (see, e.g., Refs. [1, 7, 9–12]). In this thesis,
we consider the latter aspect; the simulation of open quantum systems.

Finding a mapping between a target open quantum system and a simulator system can be
a challenging task; however, open quantum system theory furnishes quantum simulation with
a flexible tool: reservoir engineering [13].
Reservoir engineering is a general concept that considers the environment as a resource for

tuning the system dynamics. It comprises the preparation of the system in specific states, or,
appropriating more a general notion, the generation of certain system dynamics or properties.
Reservoir engineering involves the design of the environment or its coupling to the system
and can be applied in a variety of (quantum) systems [14] for entanglement generation and
protection [15–28], ground state preparation [29], dissipative computation [30], and open
quantum system simulation [9–11, 31–33]. In this thesis, we apply reservoir engineering both
to prepare states and to design dynamics.
We consider reservoir engineering in the context of two distinct physical platforms. The

first platform, and the main focus of this thesis, is ultracold Rydberg atoms. Rydberg atoms
have (at least) one electron excited to a high principal quantum number [34]. They constitute
well-controllable model systems useful for quantum simulation [9] and quantum information
processing [35, 36]. We show that, by using reservoir engineering, one can implement an open
quantum system simulator with Rydberg atoms. In addition, we demonstrate that reservoir
engineering can be applied to prepare a variety of initial states for quantum simulation,
for instance thermal states. The second platform is optomechanical. Here we use reservoir
engineering to tune system properties, in this case the displacement and dynamics of the
mechanical degree of freedom.

In both platforms, the environment harnessed for reservoir engineering exhibits a particular,
nested structure depicted in Fig. 1.1: it consists of a finite part which in turn is coupled to
a macroscopic part. Control over this environment is exercised via the finite part, whose
dynamics can be tuned. Nested environment structures are not only convenient for reservoir
engineering but also for the numerical treatment of open quantum systems, where they allow
the emulation of complex environments [37–39]. Since in these numerical approaches only
the system part is treated explicitly, nested environments provide great flexibility by allowing
one to treat selected environment parts explicitly, i.e., as part of the system. When dealing
with thermal environments, however, this immediately raises the question whether or not the
system-environment partitioning is arbitrary. To pursue this question, we employ a harmonic
environment model and show that differences in the system dynamics can arise if concepts
like temperature are naively applied to different system-environment partitionings.

Having provided an outline of the thesis scope, we now provide more details on the results
of this thesis. Each of the three different aspects of environment engineering using nested
environments addressed above is covered in a separate chapter.
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Shaping environments for Rydberg aggregates (Chapter 2)

Reservoir engineering with ultracold Rydberg atoms allows us to propose a setup for dipole-
mediated quantum excitation transport simulations. Such transport occurs, for example, in
light harvesting complexes; there, numerical investigation of excitation transport within the
electronic degrees of freedom is impeded by the coupling to a complex finite-temperature
environment of vibrational degrees of freedom [40, 41], which furthermore renders the environ-
ment non-Markovian [42, 43]. Since the presence of a complex environment also complicates
experimental research [44, 45], quantum simulators are of great interest for excitation transport
studies, as they provide a means to assess the impact of different environment effects by
allowing control of environment properties.
Rydberg atoms are ideally suited to study dipole-mediated excitation transport: firstly,

they feature strong, distance-dependent interactions, which allow one to realize excitation
transport dynamics similar to the dynamics of groups, or aggregates, of molecules [46–49].
Secondly, the long lifetimes of Rydberg states when compared to the timescale of the transport
render possible the experimental observation of excitation transport [50–52]. Thirdly, Rydberg
atoms represent a platform which provides relative ease of experimental control. That is,
optical trapping of cold atoms [53–55] enables control of atomic distances, which translates
into control of interaction strengths; and optical addressability of Rydberg atoms permits
control of excitation dynamics within the atoms.

We harness these properties of Rydberg atoms in our quantum simulator proposal. Specifi-
cally, we show that an ensemble of optically-driven ultracold atoms, which is coupled to a
photonic continuum through spontaneous emission, provides a highly-tunable environment
for a group, or aggregate, of Rydberg atoms interacting via transition-dipole coupling. This
nested atomic environment allows us in particular to image excitation transport within the
aggregate, that is, to distinguish between the two aggregate Rydberg states involved in the ex-
citation transport. Besides, we shed light on the quantum back-action relating to information
acquired on the aggregate through the imaging and decoherence: measuring the excitation
location introduces dephasing to the aggregate dynamics. We derive an effective model
for this dynamics, in which the properties of the environment atoms enter only via energy
shifts of the aggregate atoms and additional dephasing terms, and investigate the impact of
different environment effects such as site-energy disorder and decoherence on the transport.
We furthermore show that non-Markovian excitation dynamics can be simulated with our
setup. In addition, we apply reservoir engineering both to construct a thermal environment of
tunable temperature for the aggregate and to demonstrate that pure eigenstates, such as Bell
states, can be dissipatively prepared in the Rydberg atomic system.

Our setup expands the toolbox available for quantum simulation of excitation transport and
allows investigation of the impact of a broad range of environment effects on the transport
dynamics.

Tuning displacement in non-Hermitian optomechanical resonators (Chapter 3)

Reservoir engineering with optomechanical resonators allows the control of properties of the
phononic, i.e., mechanical, degree of freedom. The setup we consider consists of two coupled
non-Hermitian optical resonators, one of which supports a vibrational mechanical mode. The
non-Hermiticity of the optical resonators arises from optical gain or loss experienced by the
resonators. Singularities in the resonators’ eigenenergy spectrum can arise as a consequence
of introducing optical gain and loss; and controlling these singularities has facilitated the
design of new devices such as single-mode microring lasers [56, 57]. Optomechanical systems,
conversely, are promising platforms for high-precision sensing of forces, displacements, masses,
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and accelerations, as well as for quantum information processing, where they could realize
light-matter interfaces [58]. Combining the two themes of optomechanics and non-Hermitian
systems has been reported to yield a giant enhancement of the optomechanical coupling
strength around the spectral singularities when compared to a gain-less structure [59]. This
enhancement, which was found in resonators with balanced optical gain and loss, i.e., parity-
time (PT ) symmetric resonators, might be valuable for phonon lasing applications [59]. Here
we do not entertain this potential application but pursue the question of what advantages
the additional ingredient of non-Hermiticity introduced in Ref. [59] provides for reservoir
engineering with optomechanical structures.
We study the properties of the optomechanical system both analytically and numerically

to assess the tunability of the mechanical mode via environment properties such as optical
pumping power levels and frequencies, as well as material design parameters (gain and loss) of
the optical resonators in the classical limit. We characterize the classical steady-state solutions
and the stability properties of the mechanical mode in terms of the optical design parameters as
well as the optical pumping power levels and frequencies, and detail the conditions under which
an enhancement of the steady-state displacement of the mechanical mode can be obtained. In
particular, we find that unstable solutions exist for certain gain-loss ratios, including those
predicted in Ref. [59] to yield large enhancements. Introducing a more realistic modeling of
optical gain including gain saturation, we show that, depending on the environment design
parameters, excitation power levels and frequencies, different regimes of nonlinear dynamics
such as fixed points and sustained oscillations are possible.
Our analysis provides new insight into the interplay between optical non-Hermiticity and

optomechanical coupling.

Shifting individual modes between system and environment (Chapter 4)

The engineered environments of both physical systems (Rydberg aggregate and mechanical
mode) considered here exhibit a particular, nested structure: the system degrees of freedom
are coupled to a finite, controllable environment part which in turn is coupled to a macroscopic
environment part (cf. Fig. 1.1). In the Rydberg system, the finite part corresponds to the
laser-driven atoms and the macroscopic part to the spontaneous emission, which can be
interpreted as a coupling to a photonic continuum. In the optomechanical system, the finite
part consists of the optical resonators and the macroscopic part consists of gain and loss
providing environments that are effectively described using a non-Hermitian representation.
The nested environment structure proves convenient for exerting control over the system,

and in addition this structure is useful for environment modeling; notably for open quantum
system models using harmonic oscillator environments [37–39, 60–63]. In the framework
of harmonic environment modes linearly coupled to the system degrees of freedom, the
characteristics of a thermal environment are specified through environment temperature and
details of the system-environment coupling, encoded in a quantity called spectral density.
This allows for the mapping of complex environments onto nested environment structures,
thereby easing numerical or even implementations of quantum simulation. Given such a nested
environment, by shifting particular modes from the environment to the system part — i.e.,
by changing the system-environment partitioning — the intricacy of the environment can be
significantly reduced; for instance, a non-Markovian environment can be transformed into a
Markovian (memory-less) one [60, 62, 63]. This ‘reservoir engineering’ procedure is typically
performed in terms of the spectral density and does not incorporate temperature.
To investigate consequences of different system-environment partitionings in the presence

of temperature, we consider a nested, harmonic environment: a system of interest coupled to
a single harmonic mode, which in turn is coupled to a macroscopic environment of harmonic
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oscillators. The single mode can either be described as part of the system, or the environment.
We show how the different partitionings can change the influence of the environment on the
system of interest, which is quantified by a function called the bath correlation function. This
function depends on temperature via the initial state of the environment, which might be
chosen differently when considering the single mode to either be part of the system or of
the environment. We analyze the impact of different initial states on the bath correlation
function by numerically calculating this function, and find differences in the initial dynamics.
These differences give rise to pronounced differences in the dynamics of a system, which, for
simplicity, we choose to be a harmonic oscillator.

Our investigation using the example of a nested, harmonic environment shows that thermal
environment transformations convenient for reservoir engineering come with a caveat: when
temperature is incorporated as a property of the environment, different system-environment
partitionings can be non-equivalent if the initial state of the environment is not preserved.





Chapter 2

Shaping environments for Rydberg aggregates

Abstract — Excitation transport through dipole-dipole interactions plays
a prominent role in molecular aggregates, assemblies of molecules that
appear, for instance, in the context of photosynthesis. In these systems, the
fundamentally coherent transport mechanism competes with the coupling
to a complex, non-Markovian, finite-temperature environment. This poses
severe challenges for both numerical investigation and clean experimental
studies. Here we propose an experimental setup for quantum simulation of
excitation transport with Rydberg atoms. Rydberg atoms exhibit similar
dipolar state-changing interactions as found in molecules, but are consid-
erably simpler to study. Accordingly, we mimic the coherent excitation
transport in the molecular aggregate using a Rydberg aggregate, i.e., an
assembly of transition-dipole interacting Rydberg atoms. A set of optically-
driven ultracold atoms in turn provides a highly-tunable environment for
this aggregate through which various environment effects can be intro-
duced. Specifically, we can control the degree of decoherence as well as
non-Markovianity of the transport dynamics, and can even prepare thermal
states in the Rydberg aggregate.

The work described in this chapter is based on the following publications [64–66]:

Quantum Simulation of Energy Transport with Embedded Rydberg Aggregates
D. W. Schönleber, A. Eisfeld, M. Genkin, S. Whitlock, and S. Wüster
Phys. Rev. Lett. 114, 123005 (2015)

Non-Markovian dynamics in ultracold Rydberg aggregates
M. Genkin, D. W. Schönleber, S. Wüster, and A. Eisfeld
J. Phys. B: At. Mol. Opt. Phys. 49, 134001 (2016)

Engineering thermal reservoirs with ultracold Rydberg atoms
D. W. Schönleber, C. D. B. Bentley, and A. Eisfeld
arXiv 1611.02914 (2016)
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2.1 Introduction

Rydberg states, highly-excited electronic states with high principal quantum numbers n,
already appeared in the early days of atomic spectroscopy and have played a role in atomic
physics since [34]. Their relevance to astrophysical processes triggered mostly theoretical
work in the beginning [67]. It was the advent of the tunable laser that stimulated a rapid
growth of interest in Rydberg atoms in the 1970s, fueled by experiments facilitated by laser
technology. Advances in the field of laser cooling and trapping allowed for a resurge of interest
in the year 2000, when Rydberg atoms were proposed for applications in quantum information
processing [68, 69].

It is the remarkable properties of Rydberg states that attracted immense research interest
since their first appearance [70, 71]. The average distance of a rubidium Rydberg electron
from the nucleus, for example, amounts to ∼ 210 nm for n ≈ 55 [71]. The binding energies
associated with these extremely large electron orbits scale inversely with the electron orbit,
rendering Rydberg states very loosely bound. Huge polarizabilities and very small energy
spacings of adjacent levels give rise to strong and long-range interactions (as compared to
ground-state atoms in gases [35]), of which the C6 interaction coefficient associated with the
van der Waals interaction most notably scales as n11. Lastly, Rydberg states possess long
lifetimes of the order of ∼ 100 µs for n ≈ 55 [72].

Due to their strong interactions, ensembles of Rydberg atoms feature collective states similar
to the ones arising from coupled individual units in crystals [73, 74]. This was realized in the
seminal works [68, 69], which proposed the use of Rydberg atoms to create quantum logic gates,
utilizing what is called the dipole blockade [69]. That is, the energy of the doubly-excited
Rydberg state in a system consisting of two interacting Rydberg atoms gets shifted due to the
Rydberg-Rydberg interaction between the two atoms. Accordingly, the doubly-excited state
of two atoms which are resonantly laser-excited to the Rydberg state is rendered off-resonant,
and hence its excitation is inhibited. In a coherently-excited gas, the dipole blockade impedes
the presence of more than a single Rydberg excitation in a certain region, called the blockade
region, whose extent depends on the distance-dependent Rydberg-Rydberg interaction.
While the understanding and harnessing of the dipole blockade triggered much research

on Rydberg atoms after the year 2001, we here focus on another manifestation of the strong
interactions between Rydberg states in form of a modified optical response of a Rydberg
medium (e.g., Refs. [75–78]). More specifically, in an atomic medium in which a level scheme
including a Rydberg state is used to realize electromagnetically induced transparency [79, 80],
the optical response of the medium to a probe laser beam depends on the interaction-induced
energy shift of the Rydberg state. Reminiscent of the blockade region, the atomic medium
is thus rendered opaque to the probe beam in the vicinity of a Rydberg excitation, which
allows in particular for temporally and spatially-resolved, nondestructive imaging of Rydberg
excitations [77, 81, 82].

Owing to their relative ease of experimental control, Rydberg atoms have been proposed for
a variety of quantum simulation purposes, for instance as quantum simulators for quantum
spin models [9, 83], electron-phonon interactions [84], multi-band materials [85], or topological
insulators [86]. Admixing a small fraction of Rydberg state properties to the ground state of a
cold atomic gas using off-resonant excitation (“Rydberg dressing”), long-lived but long-range
interacting many-body systems can be obtained [87–93], which can implement, for example,
spin models for quantum magnets [94–98]. Alternatively, microwave dressing opens up
possibilities to realize interacting many-body systems with more than pairwise interactions [99,
100].

From the abundance of quantum simulation applications, our interest is directed towards a
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particular purpose: the simulation of dipole-mediated excitation transport in the presence
of an environment. Dipole-mediated excitation transport was already discussed in the 1920s
and 1930s in the context of gases [101, 102], crystals [73], and self-assembled organic dye
aggregates, as well as photosynthetic light harvesting systems [103]. In Rydberg systems,
dipole-mediated excitation transport was observed via collisional resonances first in thermal
Rydberg vapor [104] and later on in “frozen” Rydberg gases [105, 106], i.e., low-temperature
gases in which the motional degrees of freedom are essentially frozen out as the atoms cover
only small distances relative to their separation on timescales relevant for experiment. These
observations of excitation transport in Rydberg systems triggered further theoretical [47, 107–
109] as well as experimental research [110], where increasing experimental control allowed for
the observation of dipole-mediated excitation transport between both two spatially separated
ensembles of Rydberg atoms [50] and single Rydberg atoms [51], and even excitation transport
between three spatially separated single Rydberg atoms [52]. In gases, coherent [111] as well
as diffusive [81] dipolar excitation transport have been observed.
In this chapter, we study a network of transition-dipole coupled Rydberg atoms, called

Rydberg aggregate, embedded in a laser-driven, dissipative background gas from different
perspectives. Section 2.2 reviews the essentials of Rydberg physics as concerns this thesis and
introduces the system that we consider throughout this chapter. In Sec. 2.3 we then show
how the background gas can be used to monitor excitation transport within the aggregate
and how information-gain about the aggregate leads to dephasing of the aggregate dynamics.
The back-action of the background gas on the aggregate we employ in Sec. 2.4 to provide
controllable disorder and dephasing to the aggregate, thus realizing a quantum simulator
for excitation transport. Section 2.5 extends this approach while at the same time reducing
the complexity of the setup, showing that also non-Markovian aggregate dynamics can be
achieved in a small aggregate interacting with a single background atom. Lastly, in Sec. 2.6 we
apply reservoir engineering to construct a thermal environment with controllable temperature
for the Rydberg aggregate and demonstrate that also pure eigenstates, such as Bell states,
can be prepared in the Rydberg atomic system using this method.

2.2 Basic concepts

This section summarizes the basic concepts relevant for the description of the physical system
that we consider throughout this chapter, namely the embedded Rydberg aggregate. Preceded
by a brief historical introduction to Rydberg atoms, we review their properties in Sec. 2.2.1.
An important property of Rydberg atoms that deserves special attention is their interactions,
which is the topic of Sec. 2.2.2. In Sec. 2.2.3 we address the modeling of laser-excitation
and radiative decay of Rydberg states, which allows us to discuss the optical response of a
Rydberg medium in Sec. 2.2.4. Lastly, the concept of the embedded aggregate is introduced
in Sec. 2.2.5.

2.2.1 Rydberg atoms

Rydberg atoms have at least one electron excited to a state with high principal quantum
number n [34]. They were first recognized in the early days of atomic spectroscopy, when
Johann J. Balmer succeeded in 1885 in finding a formula for the wavelengths of the spectral
lines of hydrogen previously measured by Ångström, Huggins, and Vogel [112]. As we know
today, the Balmer formula describes the wavelengths of light emitted in a transition from a
higher principal quantum number n′ > n to the principal quantum number n = 2 in hydrogen.
Soon after, in 1890, Johannes R. Rydberg found an expression for the wavenumbers, as
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opposed to wavelengths, of the spectral lines of different chemical elements, given by [34, 113]

ν` = ν∞` −
Ry′

(n− δ`)2 . (2.1)

Here, Ry′ = 109721.6 cm−1 is the universal Rydberg constant, and ν∞` the series limits of the
different ` series, namely the sharp, principal, and diffuse series, from which the naming s,
p, d for angular momentum ` = 0, 1, 2 originates. The integer n we recognize today as the
principal quantum number, and δ` as the quantum defect.
The physical significance of Rydberg states only became clear in 1913 when Niels Bohr

proposed his model of the hydrogen atom [114]. Bohr combined the notion of electrons
surrounding (and presumably orbiting around) a positive charge, developed by Ernest Ruther-
ford [115], with recent advances in the theory of energy radiation, specifically the assumption
made by Max Planck [116] that radiation is emitted in quanta that are proportional to the the
Planck constant h. Despite the mixing of quantum and classical concepts1 and the resulting
shortcomings, Bohr was able to recover the Rydberg formula for hydrogen, and with it an
expression for the Rydberg constant in terms of fundamental constants such as electron mass
me and charge e. His model provided a connection between the number n in the Rydberg
formula and the radius of the electron orbit,

r = 4πε0~2

e2me
n2 = a0n

2, (2.2)

with a0 = 0.052917721 nm denoting the Bohr radius, ε0 the vacuum permittivity, and ~ the
reduced Planck constant. Accordingly, atoms in states with high principal quantum number
n, i.e., Rydberg states, have very large electron orbits. The binding energy of an electron with
high principal quantum number n, in contrast, is very small, as the energy En of an electron
is inversely proportional to the electron orbit,

En = − e2

8πε0

1
a0n2 = −Ry

n2 . (2.3)

Note that Ry = hcRy′ with h the Planck constant and c the speed of light, such that Ry has
units of energy. We now know that the classical notion of electrons contained in Bohr’s model
is not consistent with quantum theory; however, the basic observations on Rydberg atoms are
retained within the understanding of quantum theory we hold today.2 Specifically, the scaling
of the binding energy as well as the scaling of the spatial extent of the Rydberg atom with
principal quantum number n predicted by Bohr’s model agrees with quantum mechanical
findings.
With these remarks we conclude our historical introduction to Rydberg atoms; in the

remainder of this chapter we will deal with quantum theory alone. Note that we set ~ = 1 for
notational convenience in the following.
Before we continue reviewing the basic concepts of Rydberg atom theory relevant for this

thesis, we summarize the properties of Rydberg atoms. Table 2.1 lists the scalings of different
1According to Ref. [117, p. 111], William L. Bragg noted on a related topic: “On Mondays, Wednesdays and
Fridays one uses the classical laws, on Tuesdays, Thursdays and Saturdays the laws of quantum physics”.

2We note in passing that one should be careful with a ‘cumulative’ presentation of scientific progress [118],
since a new theory might ascribe new meanings to concepts such as position, mass etc., thus rendering
a straightforward comparison of theories (or paradigms) impossible. (The detection of incompatibility
requires some comparability, though [119].) An example is given by Bohr, who noted in his work on the
correspondence principle that this principle was not to diminish the differences between quantum and
classical theory, but to be understood as an asymptotic agreement of statistical results only [120, p. 144].
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Table 2.1: Properties of Rydberg atoms. The n dependence is adapted from Refs. [34, 72].

Property Expression n dependence 87Rb 43s1/2 value

Binding energya En = −Ry
n2 n−2 −8.559608(4) meV

Level spacinga En+1 − En n−3 100.049(1) GHz
Orbital radiusb 〈r〉 n2 2 384.3 a0
Polarizabilityc α n7 −17.7 MHz cm2V−2

Dipole momentb 〈ns1/2|er|np3/2〉 n2 1823 ea0
Radiative lifetimed τ0 n3 87 µs
Black-body lifetimed τbbr ≈ n2 88 µs
Effective lifetimed τeff = (τ−1

0 + τ−1
bbr)−1 43.7 µs

Van-der-Waals coefficientc C6 n11 1.697× 1019 a.u.
a Numerical values taken from Ref. [122] (experiment).
b Numerical values obtained by numerically solving the radial Schrödinger equation (cf. Appendix A.1)
using the quantum defects listed in Refs. [123, 124].

c Numerical values taken from Ref. [71] (theory).
d Numerical values calculated according to Eqs. (14) to (16) in Ref. [72] (theory), using T = 300 K. For a
comparison of different theoretical lifetime predictions, see Ref. [125].

properties of Rydberg atoms with the principal quantum number n. Particularly notable
are the scaling of the radiative lifetime and of the van der Waals interaction. The radiative
lifetime scales as n3, rendering highly-excited Rydberg states very long-lived (≈ 1.7 ms for
n = 110 [121]). The van der Waals interaction scales remarkably, as n11, giving rise to strong
interactions among Rydberg atoms on distances typical for cold atomic gases. Furthermore,
due to their huge polarizability scaling as n7, Rydberg atoms are extremely sensitive to
external fields.

Rydberg states of alkali atoms

Although Rydberg states exist in every atom, in this thesis, we focus on Rydberg states
with a single highly-excited electron, which is the relevant case for alkali-metal atoms. More
specifically, we focus on rubidium Rydberg states, one of the typical elements used in Rydberg
experiments.
Alkali atoms are atoms with a single valence electron. In a highly-excited state that is

localized far away from the core, the valence electron essentially sees a singly-charged core,
leading to a hydrogen-like electronic structure. In contrast to hydrogen, the alkali atom core is
of finite size, consisting of the nucleus and the closely-bound inner-shell electrons. Whenever
the valence electron penetrates the core, it is exposed to the unshielded nuclear charge, which,
together with core polarization, reduces its total energy (or, equivalently, increases its binding
energy) [34]. Due to the centrifugal potential, electrons in states of high orbital angular
momentum ` ≥ 3 do not penetrate the core, such that their energy is basically identical
with hydrogen, while for low angular momentum ` < 3, their energy is reduced as compared
to hydrogen. The energy difference between Rydberg states of alkali atoms and hydrogen
can be quantified by introducing an empirically observed quantum defect δn`j depending on
the principal quantum number n, the orbital angular momentum `, and the total angular
momentum j of the Rydberg state into Eq. (2.3),

En`j = − Ry

(n− δn`j)2 . (2.4)
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Figure 2.1: Radial probability densities and wave functions of Rydberg states (cf. [127]). (a) Radial
probability density r2Rn`j(r)2 of the |43s1/2〉 state of rubidium (red) and hydrogen (blue). (b) Radial
wave function of the same states as in (a) as a function of the scaled radial variable

√
r. (c) Radial

probability densities of rubidium Rydberg s states for different principal quantum numbers n. (d)
Radial probability densities of circular rubidium Rydberg states with ` = n− 1 for different principal
quantum numbers n. Color-matched dashed lines indicate the expectation value 〈r〉.

The quantum defect can be parametrized using the extended Rydberg-Ritz formula [126]

δn`j = δ0 + δ2
(n− δ0)2 + δ4

(n− δ0)4 + δ6
(n− δ0)6 + · · · . (2.5)

The parameters δ0, δ2, . . . depend on the quantum numbers ` and j and are specific for each
element; for rubidium, we only consider δ0 and δ2, whose values are listed in Refs. [123, 124].
The experimentally-obtained quantum defects are consistent with our reasoning above, i.e.,
that the energy of states with low angular momentum strongly deviates from the respective
hydrogen energy, δ0(` = 0, j = 1/2) = 3.1311804 [123], while for high angular momentum
the energy is essentially the same as hydrogen; δ0(` = 3, j = 5/2, 7/2) = 0.016312 [124].
The quantum defect is conventionally absorbed in the effective principal quantum number
n?n`j = n− δn`j .
Given the difference in energy between the states of rubidium and hydrogen for low

angular momentum quantum numbers, stemming from core penetration and polarization, it
is clear that the wave functions of rubidium and hydrogen will also differ. The radial wave
functions of rubidium Rydberg states can be calculated via the Schrödinger equation, using
the eigenenergies (2.4) as well as an adapted core potential (also including spin-orbit coupling).
Details on the calculation of the radial wave functions can be found in Appendix A.1.
In Fig. 2.1 we show radial probability densities and wave functions of Rydberg states.

Figure 2.1(a) displays the radial probability density of the 43s1/2 state of both rubidium
and hydrogen. The effect of the rubidium core on the Rydberg wave function can be clearly
seen; the rubidium core potential decreases the wavelength of the radial oscillations relative
to hydrogen. The corresponding wave functions as a function of the scaled radial variable√
r are depicted in Fig. 2.1(b), demonstrating that the oscillations of the wave function are

approximately equally spaced as a function of the scaled coordinate. Note that we adopt the
convention to take the sign of the wave function at small r to be positive, independent of
n [34]. In Figs. 2.1(c) and (d), the radial probability densities of rubidium states, both |s1/2〉
states (c) and circular states with ` = n− 1 (d) are shown for different principal quantum
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numbers n. The expectation value of the radial coordinate 〈r〉 is indicated by color-matched
dashed lines, illustrating the n2 scaling of the spatial extent of the wave function. We note in
passing that circular states, i.e., states with ` = n− 1, approach the classical limit of localized
motion in a circular orbit [128]. This is illustrated by the radial probability density of circular
rubidium Rydberg states displayed in Fig. 2.1(d), which is almost centered around the radial
coordinate a0n

2 of the classical orbit.
In the following, we will be interested in rubidium Rydberg s and p states only.

2.2.2 Interactions between Rydberg atoms
In one way or another, almost all facets of Rydberg physics rely on the “strong and long-range”
interaction of Rydberg atoms. In a simple picture, the interaction between two Rydberg atoms
can be thought of as arising from the leading-order point-charge interaction between two
separated atoms, where each atom consists of an ionic core and an electron and the distance
between the core and the electron of each atom is much smaller than the separation of the
two cores [129]. The Hamiltonian between two Rydberg atoms A and B is given by

HAB = HA ⊗ IB + IA ⊗HB +Hint, (2.6)

where HA,B denote the single-atom Hamiltonians, IA,B are the unit operators in subspace A
and B respectively, and Hint is the Hamiltonian quantifying the interaction between the two
atoms. Ignoring higher-order multipole terms, the interaction Hamiltonian is essentially given
by the dipole-dipole interaction operator, Hint ' Vdd(R);

Vdd(R) = 1
4πε0

µA · µB − 3(µA · R̂)(µB · R̂)
R3 . (2.7)

Here, R̂ is a unit vector pointing in the direction of R, the vector connecting the cores of
the two atoms A and B, and R = |R|. The transition dipole moment operators µA,B are
defined as µA,B = erA,B, with the distance vector rA,B between core and electron of atom
A and B respectively. In setting Hint ' Vdd(R), we assumed that (i) dipole interactions
dominate higher-order multipole terms, (ii) modifications of the dipole-dipole interaction due
to retardation do not play a role, and (iii) exchange effects due to wave function overlap are
negligible [130, 131].
Assumption (i) is employed since higher-order multipole contributions are typically neg-

ligible for the interatomic separations we consider here [129, 132]. Higher-multipole terms
lead to energy shifts that drop more quickly with R than those arising from dipole-dipole
interaction [131, 133]. (For a discussion of quadrupole effects in Rydberg alkali systems we
refer to Refs. [130, 131, 133–135].) Assumption (ii) is justified since the reduced wavelengths
λ̄ = λ/(2π) of the relevant Rydberg-Rydberg transitions are much larger than the interatomic
separations we consider [130] (e.g., λ̄ ∼ 500 µm for the transition |43s1/2〉 → |43p3/2〉 in 87Rb,
cf. Tab. 2.1). Assumption (iii) is justified since interatomic distances we consider are larger
than the LeRoy radius RLR,

RLR = 2
(√
〈ψA|r2|ψA〉+

√
〈ψB|r2|ψB〉

)
, (2.8)

with |ψ〉 ≡ |n`jmj〉. For distances smaller than the LeRoy radius, exchange interactions
become non-negligible [130].
To evaluate the diatomic Hamiltonian (2.6), it is convenient to employ a pair state basis
|ψA〉⊗ |ψB〉 ≡ |ψA ψB〉. The dipole-dipole operator (2.7) in the diatomic Hamiltonian depends
on the interatomic distance and couples pair states that comply with the dipole selection
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rules, 〈ψA ψB|Vdd(R) |ψ′A ψ′B〉 6= 0. The solutions to the corresponding eigenvalue problem
HAB |Φ〉 = EΦ |Φ〉 yield the new eigenstates (superpositions of the asymptotically distant
eigenstates |ψA ψB〉) and eigenenergies. The energy difference between the eigenstate at
a distance R as compared to the unperturbed pair state quantifies the Rydberg-Rydberg
interaction V (R) between the two Rydberg states. It is typically given as an expansion of
the interatomic distance R, V (R) '

∑
nCn/R

n. The expansion coefficients Cn are called
dispersion coefficients. Note that for more than two atoms, a binary interactions-based
approach to the many-body Rydberg-Rydberg interaction might not be generally valid, in
particular in the presence of resonant dipole interactions [136–138].

To gain insight into the interactions between Rydberg atoms, it is instructive to distinguish
between two sets of pair states that are coupled by the transition dipole interaction (2.7):
states that are energetically degenerate, and states which are not. We start with the discussion
of interactions between degenerate states.

Resonant dipole-dipole interaction

If two pair states |ψA ψB〉 and |ψ′A ψ′B〉 have equal energy and are directly coupled by the
transition dipole operator (2.7), one speaks of resonant dipole-dipole interaction. As a
particular example relevant for this thesis, we consider the two pair states |nsnp〉 and |npns〉,
which are intrinsically degenerate. Ignoring for a moment both Zeeman degeneracy and the
coupling to other pair states, and factoring out the dependence on the interatomic distance
from the transition matrix element, the dipole matrix element coupling these two states can
be written as

〈nsnp|Vdd(R)|npns〉 = 〈npns|Vdd(R)|nsnp〉 ≡ C3
R3 , (2.9)

where C3 ≈ µ2
ns,np denotes the product of the dipole moments quantifying the transition

strength of the transition |ns〉 → |np〉. (The approximate relationship between C3 and the
product of the dipole moments arises from the neglect of the angular momentum part of
Vdd(R). The dipole moments can be determined using the radial wave functions calculated
in Appendix A.1 via µψA,ψB = 〈ψA|er|ψB〉.) Considering the scaling of the dipole moments
∝ n2 (cf. Tab. 2.1) we see that the resonant dipole-dipole interaction scales as n4.
Accordingly, the diatomic Hamiltonian (2.6) in the pair-state basis (|nsnp〉, |npns〉) can

be written as

HAB =
(

0 C3/R
3

C3/R
3 0

)
, (2.10)

and the corresponding eigenvalues (i.e., interaction-induced energy shifts) are given by ±C3/R
3.

Since the eigenstates of Eq. (2.10) are not the pair states with localized p excitation but
their superpositions |±〉 = (|nsnp〉 ± |npns〉)/

√
2, excitation transport is induced by the

dipole-dipole interaction. That is, a p excitation initially localized at atom A (pair state
|npns〉) will coherently oscillate between atom A and B, reminiscent of Rabi oscillations.

In a quantitative treatment of interactions between resonant pair states, the simplifications
employed in the example above, namely the neglect of both Zeeman degeneracy and the
coupling to other pair states, have to be abandoned. Below we comment on how the findings
of the simplified example are modified in a quantitative treatment.
On the one hand, Zeeman-degenerate pair states have an important effect on the spatial

dependence of the dipole-dipole interaction. In the absence of an external field, states with
angular momentum ` > 0 are degenerate. In particular, for light alkali atoms which have
negligible spin-orbit coupling [139], the state |n`〉 exhibits a (2`+ 1)-fold degeneracy, whereas
for heavy alkali atoms such as rubidium where spin-orbit coupling cannot be ignored, the
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Figure 2.2: Potential energies (gray lines) as a function of the interatomic distance R, around the
87Rb pair states |43s1/2 43p3/2〉 and |43p3/2 43s1/2〉 (a) and |43s1/2 43s1/2〉 (b). The inset in (a)
displays the potential energies around |43s1/2 43p3/2〉 on double-logarithmic scale; the dashed blue line
indicates a C3/R

3 scaling with C3 = 2π × 1.8 GHz µm3 for comparison. The angle θ between R and
the quantization axis is set to zero. In (b), the dashed red line shows a C6/R

6 fit to the potential curve
(fit range [1.5, 5] µm), confirming van der Waals-type interaction for R & 1.4 µm. At small distances
R ∼ 0.8 µm, pair states become strongly mixed. This region is called the “spaghetti region” [145].

state |n`j〉 is (2j + 1)-fold degenerate. The dipole-dipole interaction mixes states within the
degenerate manifold, giving rise to spatially anisotropic interactions in general [132, 140–142].
In this case, the interaction between a pair of Rydberg atoms depends on angle between R
and the quantization axis with respect to which the magnetic quantum number mj is defined.
There are certain geometrical arrangements, however, for which the interactions among the
Rydberg atoms can be described by a distance-dependent part only, e.g., a linear chain of
Rydberg atoms (cf. Refs. [139, 143, 144]).

On the other hand, coupling to other pair states can give rise to a deviation from the R−3

scaling of the potential curves. This is illustrated in Fig. 2.2(a), which shows the potential
energies around the 87Rb pair states |43s1/2 43p3/2〉 and |43p3/2 43s1/2〉. While the potential
energies exhibit a R−3 dependence for distances R & 2 µm (cf. inset), this is no longer the
case for smaller distances where contributions from other pair states become non-negligible.
We note that for the interatomic distances employed in the remainder of this thesis, deviations
from the R−3 dependence of the resonant dipole-dipole interaction are negligible. Given that
the coupling to other pair states can be treated perturbatively, the higher-order contributions
to the resonant dipole-dipole interaction, which are of van der Waals type [139, 146], can be
calculated using degenerate perturbation theory.

Van der Waals interaction and Förster resonance

We now discuss the interaction between non-degenerate pair states. To this end, it is instructive
to consider a toy model [129, 132, 147–150], which is able to capture the essential features.
Specifically, we consider a pair state, say |nsns〉, coupled via the dipole-dipole interaction
(2.7) to another pair state, say |np (n− 1)p〉. Since the dipole-dipole interaction is invariant
under exchange of the electronic states of atom A and B, the state |(n− 1)p np〉 is also
coupled to |nsns〉. In taking only the states |np (n− 1)p〉 and |(n− 1)p np〉 into account, we
assume that all other states |nsnp〉 , |np, np〉 , . . . , are energetically far detuned, such that
their contribution to the interaction energy of the state |nsns〉 can be ignored.
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Using the pair states |nsns〉, |np (n− 1)p〉, and |(n− 1)p np〉, we can evaluate the dipole-
dipole interaction (2.7) in the same way as in Eq. (2.9),

〈nsns|Vdd(R)|np (n− 1)p〉 = 〈nsns|Vdd(R)|(n− 1)p np〉 ≡
√
Dϕ

C3
R3 , (2.11)

where C3 is given by C3 = µns,npµns,(n−1)p and
√
Dϕ contains the angular momentum part.

It is convenient to introduce the symmetrized and anti-symmetrized states given by |±〉 =
(|np (n− 1)p〉 ± |(n− 1)p np〉)/

√
2, since the anti-symmetric state |−〉 does not couple to

|nsns〉, such that the number of relevant states is reduced to two, |nsns〉 and |+〉.
The diatomic Hamiltonian Eq. (2.6) in the basis (|nsns〉, |+〉) of the two pair states can be

written as

HAB =
(

0
√

2DϕC3/R
3√

2DϕC3/R
3 ∆E

)
, (2.12)

where the energy defect ∆E (also called Förster defect) is defined as

∆E = Enp + E(n−1)p − 2Ens. (2.13)

The eigenvalues of Eq. (2.12), which explicitly depend on the interatomic distance R, can be
analytically obtained, yielding

E± = 1
2

∆E ±

√
∆E2 + 8Dϕ

C2
3

R6

 . (2.14)

In the non-degenerate regime (∆E � C3/R
3), the dipole-dipole interaction can be treated as

a perturbation to the far off-resonant basis states. The resulting interaction-induced energy
shift is of van der Waals type C6/R

6,

E− ' −
√

2DϕC
2
3/∆E

R6 , E+ ' ∆E +
√

2DϕC
2
3/∆E

R6 . (2.15)

Given that the dipole moments scale as n2, and for adjacent levels ∆E scales as n−3 (cf.
Tab. 2.1), we see that the van der Waals interaction scales as n4 × n4 × n3 = n11. Since R,
C2

3 and Dϕ are positive, the sign of ∆E determines whether the van der Waals interaction
is repulsive or attractive. For ∆E > 0, the van der Waals interaction is repulsive while for
∆E < 0 it is attractive.

So far, we neglected states other than |+〉 and |nsns〉, and we restricted our attention to
just two sets of quantum numbers, ignoring Zeeman degeneracy. In a quantitative treatment,
a large number of basis states has to be taken into account for the diagonalization, particularly
at low interatomic distances when new resonances arise due to the strong mixing of pair states
by the dipole-dipole interaction [96]. Additionally, an accurate treatment needs to account for
the full set of quantum numbers (n, `, j,mj).
Figure 2.2(b) shows the result of a full numerical diagonalization of the two-atom Hamil-

tonian (2.6) around the 87Rb pair state |43s1/2 43s1/2〉. Since no directly-coupled states are
energetically close-by, the state experiences an energy shift of van der Waals type, with a fitted
C6 coefficient of C6/2π ≈ 2.4 GHzµm6, agreeing with the value listed in Ref. [151]. Note
that around R ∼ 1 µm, states from the |40p3/2 43f5/2,7/2〉 manifold weakly admix, leading
to a deviation of the energy shift from a purely van der Waals C6/R

6 behavior. Due to the
inverse dependence of the van der Waals interaction on the energy difference of the respective
pair states, it is essential to use reliable alkali state energies in either perturbation theory
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or numerical diagonalization, such as those given by Eq. (2.4), where the quantum defect is
chosen to yield eigenenergies matching the experimentally measured values.

We note that for non-degenerate pair states, the interaction-induced energy shift of a certain
pair state |ψA ψB〉 can be obtained via standard second-order non-degenerate perturbation
theory [139, 149, 151], which includes summation over all possible intermediate pair basis
states except |ψA ψB〉. For the toy example, where we are interested in the |nsns〉 state and
the states |±〉 are the only relevant pair states, perturbation theory yields the same energy
shift as Eq. (2.15). Dispersion coefficients for |nsns〉, |npnp〉, and |ndnd〉 rubidium Rydberg
states calculated via second-order perturbation theory can be found in Ref. [151]. (This
reference defines V (R) ' −C6/R

6 in contrast to our definition V (R) ' C6/R
6, leading to a

different sign of the dispersion coefficient C6.) Note that the notion of dispersion coefficients
relies on perturbation theory. At ‘small’ interatomic separations, the dipole-dipole interaction
induces a strong mixing of pair states, creating the so-called “spaghetti region”, in which
standard perturbation theory no longer applies.
When the Förster energy defect ∆E is small compared to the dipole-dipole interaction,

the interaction between the pair states is no longer of van der Waals type, but is rendered
resonant; for ∆E � C3/R

3, the eigenvalues of Eq. (2.12) in our toy model read as

E± ' ±
√

2DϕC3
R3 . (2.16)

In this case, when the dipole-dipole interaction is much larger than the Förster energy
defect, one speaks of a Förster resonance. Förster resonances can be created artificially using
electric [104, 152, 153] or microwave fields [154, 155] and allow for the tailoring of strength
and angular dependence of the dipole-dipole interaction [156]. We will make use of a Förster
resonance later to enhance the interaction between two states.

Note that this thesis is not concerned with the numerical calculation of dispersion coefficients
for Rydberg-Rydberg interactions. For details on the calculation of the dipole matrix elements
and the numerical diagonalization of the dipole-dipole interaction Hamiltonian with a specified
basis we refer to Refs. [96, 140, 147–149] and the references therein. For a detailed account of
the effects of an external electric field on Rydberg-Rydberg interactions, see Refs. [130, 140,
157–160].

Dipole blockade

Interactions between Rydberg atoms give rise to an effect called “dipole blockade” [69]. This
denotes the inhibition of multiple Rydberg excitations within a spatially confined ensemble of
atoms addressed by a narrowband laser on resonance with the single-atom ground-Rydberg
(|g〉 to |r〉) transition. Due to interactions between the Rydberg |r〉 states, collective states
with more than a single |r〉 excitation are shifted in energy. Hence, a laser that is tuned to
resonance between the ground |g〉 and Rydberg |r〉 state is no longer resonant with collective
states with multiple Rydberg excitations. Multiple Rydberg excitations are thus inhibited in
such an interacting ensemble.

Figure 2.3 illustrates the dipole blockade for a simple diatomic system consisting of ground
|g〉 and Rydberg |r〉 states. The two Rydberg states interact via the van der Waals interaction
C6/R

6. At large interatomic distances R, the energy of the doubly-excited Rydberg state
|rr〉 is negligibly shifted. Accordingly, a laser that resonantly excites the ground state to the
Rydberg state is also in resonance with the doubly excited state. As the interatomic distance
decreases, the magnitude of the energy shift of the doubly excited state increases due to the
van der Waals interaction, thus rendering the laser off-resonant with respect to the transition
between singly-excited and doubly-excited Rydberg states [35, 71, 129].
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Figure 2.3: Illustration of the dipole blockade effect. The energy levels correspond to the pair states
of two atoms consisting of ground |g〉 and Rydberg |r〉 states, with |+〉 ≡ (|rg〉+ |gr〉)/

√
2. Each atom

is addressed by a laser (Rabi frequency Ω) resonantly driving the transition from the ground to the
Rydberg state. At small interatomic distances, the interaction-induced energy shift ∆vdW (assumed to
be of van der Waals type) shifts the doubly-excited state |rr〉 out of laser resonance. Power broadening
∝ Ω2 [161], decay Γr of the Rydberg level and also dephasing γ (e.g. due to the laser linewidth) [162]
can lead to a broadening of the |rr〉 resonance, counteracting the dipole blockade. The figure is adapted
from Ref. [163].

In a dipole-blockaded atomic ensemble, only a single Rydberg excitation is admitted. In
the absence of decohering processes, the laser Hamiltonian is symmetric under exchange
of particles [164], such that rather than a single localized excitation, the system exhibits
a symmetric superposition of singly-excited states, such as |+〉 ≡ (|rg〉 + |gr〉)/

√
2 for the

diatomic system depicted in Fig. 2.3. The Rabi frequency associated with the transition
|g〉 ↔ |+〉 is collectively enhanced by a factor of

√
2 for 2 atoms, and

√
N for N atoms [97,

165–168].
The distance at which the doubly-excited state can no longer be populated is called

the blockade radius and can be estimated by equating the interaction-induced energy shift
∆vdW = C6/R

6 with the collectively enhanced Rabi frequency
√
NΩ, yielding [35]

Rbl '
(

C6√
NΩ

)1/6
. (2.17)

The blockade radius is a helpful concept, e.g. for estimating the number of Rydberg excitations
that fit into a certain volume filled with ultracold atoms resonantly excited to the Rydberg
state. It is not to be understood as a hard-core sphere inside which no multiple-Rydberg
excitations are possible. Rather, the blockade is a gradual process with decreasing probability
of finding another Rydberg excitation as we move closer to an existing Rydberg excitation.
Note, however, that if the Rydberg state |r〉 is excited via a resonant two-step excitation

process and the Rydberg-Rydberg interactions are repulsive, multiphoton resonances can give
rise to enhanced Rydberg state populations as compared to the non-interacting case [169],
rendering the simple blockade picture questionable. Additionally, the blockade picture can be
rendered invalid in the presence of nearly-resonant dipole-dipole interactions [136] or due to
non-additivity of van der Waals potentials [137], for instance.
Although we do not make explicit use of the dipole blockade in the remainder of this

chapter, the dipole-blockade concept will be helpful for the discussion of optical response
properties of a Rydberg medium, which we address in Sec. 2.2.4.



2.2 Basic concepts 19

2.2.3 Laser excitation and decay of Rydberg atoms
We now briefly discuss the interaction of a single three-level atom with two classical laser
fields. More specifically, we address the optical excitation of a ground state atom to the
Rydberg state via a two-step scheme, which we employ throughout this chapter. We then
introduce the master equation, which allows us to take into account radiative decay.

The interaction between an electric field and a single atom is described by the interaction
Hamiltonian3

HL = −µ ·E(R0, t) = −er ·E(R0, t), (2.18)

with E denoting the electric field, µ the transition dipole moment of the atom, and r the
location of the electron relative to the center of mass position R0 of the atom [161, 171]. In
writing Eq. (2.18), we employed the dipole approximation, i.e., the assumption that the field
associated with the laser is constant over the dimension of the atom [161]. For highly-excited
Rydberg atoms with spatial extent of the electronic wave function on the order of µm [121],
this approximation seems highly questionable. It turns out, however, that even though the
dimension of the wave function of the Rydberg electron is no longer small compared to the
wavelength of the laser used to induce a certain transition (for the systems we consider, on the
order of 500 nm), the use of the dipole approximation is justified since the interaction with the
laser light primarily occurs close to the core [175, 176]. In 87Rb, for example, the transition
matrix element between the state |5p3/2〉 and a high-lying |ns1/2〉 Rydberg state acquires its
value in a region close to the core, since the spatial extent of the |5p3/2〉 electron wave function
is confined to a region close to the core. Remarkably, this reasoning even applies for the
treatment of photoionization of Rydberg states [175, 176], for which the wave functions clearly
extend far beyond the core region. Accordingly, we safely apply the dipole approximation in
laser-addressed Rydberg atoms despite their huge size, which can be comparable to the laser
wavelength.

Assuming a monochromatic laser field with frequency ωL and amplitude E , the field at the
center of mass of the atom is given by

E(R0, t) = E cos(ωLt). (2.19)

Deviations from a monochromatic laser source (such as a finite linewidth of the laser) are
not considered here, but can be accounted for by adding a dephasing term in the master
equation [147, 177].
In this work, we consider a two-step excitation scheme to the Rydberg state using two

classical laser fields. If we want to populate the |ns1/2〉 Rydberg states via laser driving, a
single laser field is not sufficient due to the dipole selection rules, since the ground state of
rubidium is also an |s〉 state. Furthermore, a three-level scheme will provide us with “richer
physics”, as we will see in the following section.
The two-step excitation of a rubidium Rydberg |s〉 state via an intermediate |p〉 state is

sketched in Fig. 2.4. Here, a probe laser with field amplitude Ep couples the ground state
|g〉 = |5s1/2〉 with the intermediate state |e〉 = |5p3/2〉. A second laser with field amplitude Ec,
called the coupling laser, then couples the intermediate state |e〉 to a Rydberg |r〉 = |ns1/2〉
state. We assume that the two lasers are almost resonant with the respective |g〉 ↔ |e〉 and
|e〉 ↔ |r〉 transitions, but far detuned from any other electronic state, such that we accurately

3We note that using the Schrödinger equation rather than the Dirac or Pauli equation implies that we neglect
spin magnetic moment and specific relativistic effects [170]. Besides, we neglect any modification of the
incident radiation resulting from the interaction with the atom [171]. For further details on the derivation
of the Hamiltonian describing the interaction between atom and electromagnetic field, and in particular
the equivalence and caveats regarding different choices of gauge transformations, we refer to Refs. [161,
171–174].
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Figure 2.4: Level diagram of the laser excitation scheme considered in this chapter. The probe laser
(Rabi frequency Ωp, wavelength λp = 780 nm) couples the ground state of 87Rb, |g〉 = |5s1/2〉, to the
intermediate |e〉 = |5p3/2〉 state. The coupling laser (Rabi frequency Ωc, wavelength λc = 480 nm)
then couples the intermediate state to a Rydberg |ns1/2〉 state. The laser detuning ∆p (∆c) quantifies
the frequency mismatch between the probe (coupling) laser frequency and the |5s1/2〉 → |5p3/2〉
( |5p3/2〉 → |ns1/2〉) transition frequency. Γp accounts for the radiative decay from the intermediate
state |e〉 to the ground state |g〉.

describe the system by means of the three-state basis {|g〉 , |e〉 , |r〉}. Within the rotating
wave approximation (RWA), the corresponding atom-laser Hamiltonian Hlaser resulting from
Eq. (2.18) for the two applied laser fields is given by

Hlaser =

 0 Ωp/2 0
Ωp/2 −∆p Ωc/2

0 Ωc/2 −(∆p + ∆c)

 . (2.20)

Here, Ωp,c denote the (real) Rabi frequencies [178],

Ωp = −〈g|er · Ep|e〉, Ωc = −〈e|er · Ec|r〉, (2.21)

associated with the respective |g〉 ↔ |e〉 and |e〉 ↔ |r〉 transitions. The laser detunings ∆p,c

are defined as ∆p = ωp − (Ee − Eg) and ∆c = ωc − (Er − Ee), for the laser frequencies ωp,c.
The RWA approximation [171, 173, 178] amounts to performing a unitary transformation into
a frame rotating with the laser frequencies and then neglecting rapidly oscillating phases [163,
177, 179]. For this approximation to be valid, we need Ωp � (Ee − Eg) and Ωc � (Er − Eg)
to hold [171]. With Rabi frequencies of ∼ 10 MHz and transition energies of ∼ 108 MHz, this
approximation is well justified.
So far, we have assumed that the quantum systems we consider are isolated from any

environment, such that the dynamics of the relevant states follows the Schrödinger equation.
We now abandon this assumption to treat processes such as radiative decay, which arise
from interaction with a continuum of electromagnetic modes [180]. One way of treating open
quantum systems is to introduce a master equation of Lindblad form [3, 4, 181]. That is,
instead of using the Schrödinger equation to calculate the time evolution of a pure state vector
|ψ〉, we employ the von Neumann equation for the density matrix ρ,

ρ̇(t) = −i[H, ρ(t)] + LLj [ρ(t)], (2.22)

with the Lindblad superoperator LLj [ρ(t)] for the Lindblad operator Lj reading as

LLj [ρ(t)] = 1
2
{

[Ljρ(t), L†j ] + [Lj , ρ(t)L†j ]
}
. (2.23)
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Here, the index j of the Lindblad operator indicates that several Lindblad operators may
occur in the master equation, e.g. corresponding to different decay processes. For the radiative
decay of the short-lived |e〉 state depicted in Fig. 2.4 to the ground state |g〉, the Lindblad
operator takes the form

L =
√

Γp |g〉〈e| . (2.24)

The radiative decay rate Γp = τ−1
p is given by the natural linewidth (FWHM) of the state |e〉.

The Lindblad equation (2.23) with the operator (2.24) gives an appropriate description of
spontaneous emission of an atom in vacuum [182].
We will depend on the master equation (2.22) in the following for the description of our

system consisting of ultracold Rydberg atoms. Note that the Lindblad superoperator (2.23) is
derived in the Born-Markov approximation, i.e., assuming weak coupling to the environment
(Born approximation) and fast decay of the correlations in the bath on the timescales relevant
for the system dynamics (Markov approximation). In addition, a secular (or rotating wave)
approximation has been applied to arrive at the Lindblad form [3].
Instead of formulating the master equation Eq. (2.22) using density matrices, it can be

convenient to employ a formulation in Liouville space [4, 183], in which the master equation
for the density vector |ρ〉 reads as

|ρ̇〉 = Llv |ρ〉 . (2.25)

Here, the density operator is vectorized using Choi’s isomorphism |ψi〉〈ψj | → |ψi ψj〉 [184],
which maps any operator ρ to a vector |ρ〉. Accordingly, the Liouvillian superoperator Llv for
the master equation Eq. (2.22) is given by [183, 184]

Llv = −i (H⊗ I + I ⊗H) +
∑
j

1
2
(
2Lj ⊗ L∗j − L

†
jLj ⊗ I − I ⊗ L

T
j L
∗
j

)
, (2.26)

with I denoting the identity operator, and the star denoting complex conjugation. A discussion
of the advantages of the Liouvillian formulation can be found in Ref. [183]. For our part, we
mention this alternative formulation as it proves convenient in the numerical implementation
of the Lindblad terms in Sec. 2.4.1, given that Llv is typically sparse.

2.2.4 Optical response of a Rydberg medium

Having addressed the excitation of Rydberg atoms via laser fields, we have everything at
hand to review the linear optical response properties of Rydberg atoms [147, 177, 185], which
are crucial for the understanding of excitation transport imaging in Sec. 2.3, i.e., the optical
discrimination between the two Rydberg states (s and p) involved in the excitation transport.
We start by discussing the optical response properties of two-level atoms and then continue
with those of three-level atoms, which feature effects unseen in two-level systems, such as
electromagnetically induced transparency. Lastly, we briefly discuss how Rydberg-Rydberg
interactions influence the optical response properties of Rydberg atoms.

Optical susceptibility and absorption

As light travels through a polarizable medium, it is both attenuated and diffracted, with
the amount of absorption and diffraction determined by the complex refractive index n of
the medium. The optical resonse of a medium can be quantified by means of the complex
susceptibility χ, which is related to the refractive index n via n =

√
1 + χ. For an illustration,

consider a laser field with wave vector k propagating through a medium with associated
refractive index n. The output electric field after a distance L is given by E(L) = eiknLE(0).
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Figure 2.5: Level diagrams of two and three-level atoms in EIT configuration. (a) Two-level atom,
coupled via a laser (probe laser, Rabi frequency Ωp and detuning ∆p) to the short-lived excited state
|e〉. (b) Three-level atom with additional driving of a transition |e〉 ↔ |r〉 with a second laser (coupling
laser, Rabi frequency Ωc) that is tuned to resonance with respect to the transition |e〉 ↔ |r〉. (c)
Three-level atom similar to (b), but with resonant probe laser (∆p = 0) and interacting Rydberg
level |r〉. The interaction-induced energy shift ∆vdW moves the two-photon transition |g〉 ↔ |r〉 out of
resonance.

For |χ| � 1, the refractive index can be expanded as n =
√

1 + χ ' 1 + (Re[χ] + i Im[χ])/2,
leading to an output intensity

I(L) = e−kIm[χ]LI(0). (2.27)

Hence, the imaginary part of the complex susceptibility, which can be calculated in theory as
detailed below, describes the absorption of the medium, which can be measured in experiment.
In the following, we are interested in the optical response of an atomic medium to laser

light, specifically to the laser light of the probe laser introduced in the previous section 2.2.3,
which couples the two states |g〉 and |e〉. To evaluate this optical response, we first note that
the electric polarization P of a dielectric medium is linked to the incident electric field E via
the first-order complex susceptibility χ [173]

P = ε0χE. (2.28)

The polarization P acts as a source term in Maxwell’s equations and thus determines the
electromagnetic field dynamics. Note that we restrict ourselves to the case of linear optical
response here, i.e., the case where the polarization of the medium is directly proportional to
the incident field.

In an atomic medium without a permanent dipole moment, the polarization P of the atomic
medium is induced by the electric field, giving rise to a complex interplay between the electric
field and the induced polarization in general [161]. It is thus instructive to consider the atomic
medium in its steady state. In this case, the macroscopic polarization P of a resonantly-driven
two-level medium [cf. Fig. 2.5(a)] is determined by the corresponding transition dipole of the
individual atoms via

P = n0 〈µ〉 . (2.29)

Here, n0 is the atomic density, µ = µe,g(|e〉〈g| + H.c.) is the transition dipole moment of a
single atom and 〈·〉 = Tr{·ρ̃} denotes the expectation value with respect to the steady-state
density matrix ρ̃ of the two-level system.
Combining the two relations (2.28) and (2.29) for the polarization P allows one to obtain

an explicit expression for the steady-state complex optical susceptibility χ̃ [147, 177, 185, 186],

χ̃ = −
2n0µ

2
e,g

ε0Ωp
ρ̃eg, (2.30)
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where Ωp denotes the Rabi frequency of the transition |g〉 ↔ |e〉. Making use of the definition
of the decay rate of a two-level system for the level |e〉 [180],

Γp =
k3
pµ

2
e,g

3πε0
, (2.31)

where kp denotes the wave vector kp = 2π/λp of the transition |g〉 ↔ |e〉, we can recast
Eq. (2.30) into the form [187]

χ̃ = −6πn0Γp
k3
pΩp

ρ̃eg ≡ −χ0
Γp
Ωp
ρ̃eg. (2.32)

Here we defined the two-level resonant susceptibility χ0 = 6πn0/k
3
p ≡ σ0/kpn0 where σ0 is

the absorption cross section of a single atom [80]. Employing the relation ρeg = ρ∗ge, we can
further write4

Im[χ̃]/χ0 = −Γp
Ωp
ρ̃eg = Γp

Ωp
ρ̃ge. (2.33)

Equation (2.33) relates the optical absorption of an atomic medium to its quantum state. We
will rely on this expression in Sec. 2.3.1 to determine the optical response of a background gas
for Rydberg excitation imaging.

Electromagnetically induced transparency (EIT)

Electromagnetically induced transparency (EIT) is one among many effects that enters when
moving from two-level to three-level atomic physics. As we have seen in the previous section, a
resonantly-driven two-level atom absorbs light. If a third resonantly-driven level is added, the
absorption vanishes. This effect is called EIT [80], and will be crucial for Rydberg excitation
transport imaging, discussed in Sec. 2.3.

For an illustration of how EIT arises, consider the three-level system sketched in Fig. 2.5(b),
which is driven on two-photon resonance ∆p + ∆c = 0. The corresponding laser Hamiltonian
in the basis {|g〉 , |e〉 , |r〉} reads as (cf. Eq. (2.20))

HEIT =

 0 Ωp/2 0
Ωp/2 −∆p Ωc/2

0 Ωc/2 0

 . (2.34)

Evaluating the product HEIT |d〉 with |d〉 defined by

|d〉 = Ωc |g〉 − Ωp |r〉√
Ω2
p + Ω2

c

, (2.35)

we see that |d〉 is an energy-zero eigenstate, HEIT |d〉 = 0. This implies that |d〉 is a dark state,
i.e., a state that does not interact with the electromagnetic field [161]. In particular, |d〉 does
not have any contribution of the short-lived state |e〉, such that within our description it does
not lose population nor scatter any light. The susceptibility χ ∝ ρge of a system in state |d〉
thus vanishes, rendering the three-level medium transparent to the probe beam.

To quantify EIT in the three-level (|g〉 , |e〉 , |r〉) case and to compare to the two-level (|g〉 , |e〉)
case, we evaluate the imaginary part of the steady-state complex susceptibility χ̃, which is

4Note that the imaginary part of the steady-state coherence ρ̃ge and the steady-state population ρ̃ee are
related via Im[ρ̃ge] = Γp/Ωpρ̃ee [76], which allows one to simulate the optical response of an atomic gas via
rate equations.
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Figure 2.6: (a) Imaginary part of the scaled steady-state susceptibility χ̃/χ0 as a function of the
probe laser detuning ∆p, for both the three-level (solid blue, ∆c = 0) and the two-level (solid red,
obtained via Ωc = 0) case. (b) Imaginary part of the steady-state susceptibility as a function of
the interaction-induced energy shift ∆vdW, for both three-level (solid blue) and two-level (solid red,
obtained via Ωc = 0) case. Parameters are Ωp = 5Ωc = 10Γp.

proportional to the density matrix ρ̃ge, as shown in Eq. (2.33). The two and three-level atoms
are driven-dissipative systems, which reach a unique steady state after a finite time [188], with
the steady-state coherences ρ̃ge given by

ρ̃(2lvl)
ge (∆p) = Ωp(2∆p + iΓp)

4∆2
p + Γ2

p + 2Ω2
p

, (2.36a)

ρ̃(3lvl)
ge (∆p) =

2∆pΩp(4∆2
p + 2i∆pΓp − Ω2

c)
16∆4

p + 4∆2
p(Γ2

p + 2Ω2
p − 2Ω2

c) + (Ω2
p + Ω2

c)2 (2.36b)

for ∆c = 0.
Figure 2.6(a) shows the imaginary part of the steady-state susceptibility χ̃ divided by the

two-level value χ0 for an exemplary set of parameters, for both the two-level (solid red) and
the three-level (solid blue) case [from Eqns. (2.33) and (2.36)]. The two-level atom absorbs
maximally on resonance ∆p = 0 and exhibits a Lorentzian absorption line shape with a
FWHM of Γp in the absence of power broadening ∝ Ω2

p. In the three-level case, in contrast,
the absorption drops to zero on resonance ∆p = 0 due to the EIT effect.
If the upper state |r〉 is a Rydberg state that interacts via van der Waals interaction, the

Rydberg state will experience an interaction-induced energy shift ∆vdW in the vicinity of an
existing Rydberg excitation. The corresponding level scheme is depicted in Fig. 2.5(c). For
large ∆vdW, the Rydberg state will be shifted out of resonance with respect to the coupling
laser, which alters the absorption properties of the atom. For a resonant probe beam, ∆p = 0,
Fig. 2.6(b) shows the imaginary part of the scaled steady-state susceptibility χ̃/χ0 using
Eq. (2.33) with

ρ̃(3lvl)
ge (∆vdW) = 2∆vdWΩp(2iΓp∆vdW − Ω2

c)
4∆2

vdW(Γ2
p + 2Ω2

p) + (Ω2
p + Ω2

c)2 , (2.37)

with the two-level case also shown as a reference. For large interaction-induced energy shifts
∆vdW, the susceptibility essentially equals that for the two-level case since ∆vdW shifts the
Rydberg state |r〉 out of resonance with the coupling laser, rendering the system effectively
two-level-like. For small ∆vdW, in contrast, EIT is recovered and the atom becomes transparent
to the probe beam.
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Figure 2.7: Sketch of an embedded Rydberg aggregate. An assembly of several Rydberg atoms
in state |s〉 (large blue) and one in state |p〉 (large orange) is linearly arranged with spacing d in
a background atomic gas (shades of green). When addressed in an EIT scheme, the laser-driven
background gas atoms are rendered transparent only outside the critical radii Rc,p and Rc,s, which are
of different magnitude for the aggregate states |p〉 and |s〉.

To obtain an estimate for when the three-level system transitions from transparency to
absorption with respect to the probe beam, we define the EIT width γEIT via the critical
interaction ∆crit at which Im[χ̃]/χ0 equals half its value at full absorption ∆vdW →∞, which
corresponds to the condition

ρ̃ge(∆crit) = ρ̃ge(∆vdW →∞)/2. (2.38)

For low probe fields, i.e., evaluating the steady-state coherence ρ̃ge only up to first order in
Ωp, we obtain

∆crit = Ω2
c

2Γp
. (2.39)

The EIT width is then given by γEIT = 2∆crit. In the case that the interaction-induced energy
shift can be described by a simple power law, such as ∆vdW = C6/R

6 for the van der Waals
interaction, one can express the condition for breakdown of EIT in terms of a critical radius

Rc =
(2ΓpC6

Ω2
c

)1/6
. (2.40)

This formulation will prove useful in the context of excitation transport imaging in Sec. 2.3.

2.2.5 The embedded Rydberg aggregate
We are now in a position to introduce the setup that we study throughout this chapter,
sketched in Fig. 2.7. We consider a laser-driven gas of ultracold 87Rb atoms, the positions of
which could be random (Secs. 2.3 and 2.4) or arranged in a regular fashion (Secs. 2.5 and
2.6). Within this background gas (green circles in Fig. 2.7), we excite N Rydberg atoms,
which form the aggregate, our system of interest. For what follows, we consider a particular
geometry of this aggregate, namely a chain of N Rydberg atoms (N = 5 in Fig. 2.7) with
spacing d. Such an equidistant arrangement of Rydberg atoms can be created by exciting
Rydberg states from a trapped ultracold atomic gas using tightly focused laser beams [53–55,
110]. In principle, pulsed or chirped excitation in the dipole blockade regime also gives rise to
spatially correlated Rydberg excitation patterns [111, 189–197]; however, this technique might
not provide a large degree of control over the distance distributions.
By using an ultracold gas for our proposal, we ensure that thermal motional effects are

negligible, and do not have to be accounted for in our theoretical description. This is the
frozen gas regime. In current experiments, the temperatures of the atomic gas ranges from the
nK [196] to the µK [168, 198, 199] regime, for which the thermal velocity is of order nm/µs.
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Forces due to interactions might, however, invalidate this assumption; some estimates in this
regard can be found in Sec. 2.3.1.
While the aggregate comprises our system, the background gas constitutes a versatile and

controllable environment for the system. In the following subsections, we detail the modeling
of the aggregate, the background gas, and their mutual interactions.

System: The aggregate

The Rydberg aggregate consists of N Rydberg atoms in a certain arrangement. For simplicity,
we use a linear arrangement of Rydberg atoms with equidistant spacing d; in principle,
arbitrary arrangements are possible. Of these N atoms, N − 1 atoms are initially prepared
in the state |s〉 = |43s〉 with angular momentum ` = 0, while a single atom is excited to the
state |p〉 = |43p〉 with angular momentum ` = 1. Such a configuration can be achieved in
experiment similar to Ref. [52] by first preparing the |p〉 state via a microwave pulse starting
from an initial |s〉 state, or, alternatively, via a direct excitation from the ground state [200].
The |s〉 states can be excited subsequently via a two-photon transition [81].

The |p〉 excitation can migrate through the aggregate via resonant dipole-dipole exchange
interactions [34, 47], with a dynamical evolution depending on the interaction with the
environment. Dipole-dipole interactions thus induce excitation transport in the aggregate,
in the same way as they do in other physical setups, including photosynthesis [201, 202],
quantum-dot arrays [203], and molecular aggregates [204, 205]. This turns our Rydberg
aggregate into a model system for excitation transport, or exciton transport. The term exciton
here originates from the analogy between Rydberg and molecular aggregates [46, 206]. In
molecular aggregates, the so-called Frenkel exciton model [73] describes excitation transport
where the moving excitation energy is an intramolecular excitation (i.e., no charge transfer
between different molecules occurs) [5]. Note that we use energy transport synonymous with
excitation or exciton transport, as the |p〉 state is higher in energy than the |s〉 state.

Since we only consider a single Rydberg |p〉 excitation, we can restrict our discussion to the
“single-excitation” manifold, with the term “excitation” again referring to the |p〉 excitation.
This manifold is spanned by basis states in which the |p〉 excitation is localized on different
atoms, or sites. Specifically, the state |π1〉 = |pss · · ·〉 denotes the state with the |p〉 excitation
localized on site one, |π2〉 = |spss · · ·〉 etc. Setting the constant energy offset to zero, the
aggregate Hamiltonian in this basis reads as5

Hagg =
∑
n6=m

Wnm |πn〉〈πm| , (2.41)

whereWnm = C3/|Rn−Rm|3 = C3/(|n−m|d)3 denotes the resonant dipole-dipole interaction
and C3 is given by C3/(2π) = 1619 MHzµm3 [64]. Note that Roman indices such as n,m
always refer to aggregate atoms in this chapter. For simplicity, we ignore van der Waals
interactions between aggregate atoms in Eq. (2.41) [146], which is valid for the large interatomic
separations between the aggregate atoms that we predominantly employ in this chapter. In
addition, we ignore the finite lifetime of the Rydberg |s〉 and |p〉 excitations. This implies
that we cannot consider arbitrarily large aggregate sizes in our study of excitation transport
without heavily relying on post-selection, as will be detailed in Sec. 2.3.1.

Besides inducing excitation transport within the aggregate, resonant dipole-dipole interac-
tions also modify the eigenenergy structure of the aggregate. That is, for nonzero interaction
Wnm, the eigenstates of the aggregate Hamiltonian (2.41) are no longer given by the localized

5See Ref. [143] for more details on how to obtain a convenient form of the resonant dipole-dipole interaction
in one-dimensional geometries via suitable choice of the quantization axis.
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Figure 2.8: Sketch of the level structure of a Rydberg aggregate in the |π1〉 state, i.e., with the first
aggregate atom excited to the Rydberg state |p〉 (orange) and the remaining atoms excited to the
Rydberg state |s〉 (blue). The |p〉 and |s〉 states are coupled by resonant dipole-dipole interactions with
magnitude W . Within the singly-excited manifold and nearest-neighbor coupling, the energies of the
eigenstates split into an exciton band with energy splitting

√
2W of adjacent levels.

states |πn〉, but rather by a superpositions of localized states. To illustrate this, let us consider
a chain of three Rydberg aggregates, sketched in Fig. 2.8. For an equidistant chain of atoms
(W = C3/d

3 with spacing d) and assuming only nearest-neighbor coupling, the Hamiltonian
for the aggregate is

H(3×3)
agg =

 0 W 0
W 0 W
0 W 0

 . (2.42)

The eigenstates are superpositions of the localized excitations,

|ϕ+〉 = 1
2(|π1〉+

√
2 |π2〉+ |π3〉), (2.43a)

|ϕ−〉 = 1
2 |π1〉 −

√
2 |π2〉+ |π3〉), (2.43b)

|ϕ0〉 = 1√
2(|π1〉 − |π3〉), (2.43c)

with the corresponding energies E± = ±
√

2W and E0 = 0. Following Refs. [5, 46, 201, 206],
we call also the eigenstates of the aggregate Hamiltonian excitons.

Although localized excitations are easier to measure experimentally than delocalized exciton
states, the eigenstate basis is often more appropriate to assess physical properties of the
aggregate, such as temperature. We will come back to this in more detail in Section 2.6, in
which we discuss how thermal mixtures of exciton states can be dissipatively prepared.

Environment: The background gas

The background gas that constitutes a controllable environment for our aggregate is laser
driven (cf. Sec. 2.2.3). A laser with Rabi frequency Ωp and detuning ∆p couples the ground
state |g〉 to an intermediate, short-lived state |e〉. A second laser with Rabi frequency Ωc and
photon detuning ∆c couples the intermediate state |e〉 to a Rydberg state |r〉 or |r′〉, with
|r〉 (|r′〉) 6= |s〉 , |p〉. Tuning of laser frequencies and intensities enables the control over the
background atoms. In the rotating wave approximation, the laser-driven background gas is
described by the Hamiltonian

Hbg =
∑
α

[Ωp

2 [|e〉〈g|]α + Ωc

2 [|r〉〈e|]α + H.c.
]
−∆p [|e〉〈e|]α − (∆p + ∆c) [|r〉〈r|]α , (2.44)
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where [|a〉〈b|]α is an operator |a〉〈b| acting only in subspace α. Note that Greek indices always
refer to background atoms in the following. For the atomic states we choose |g〉 = |5s1/2〉,
|e〉 = |5p3/2〉, and |r〉 either |r〉 = |38s1/2〉 or |r′〉 = |17s1/2〉 in our setup.

In writing the many-body laser Hamiltonian (2.44) as a sum of single-atom laser Hamiltonians
(2.20), we assume that the lasers address each background atom alike. This assumption ignores
propagation effects such as non-linear beam attenuation due to multiple Rydberg excitations
in the propagation direction of the laser beams; an assumption that is is valid for quasi
two-dimensional background atom geometries, for instance. A more detailed discussion of
this assumption can be found in Sec. 2.3.1. Note that spatially varying constant phases of
the Rabi frequencies ∝ eik·Rα with k denoting the wave vector of probe respectively coupling
beam and Rα the position of background atom α can be transformed away via local unitary
transformations [163, 177].
The radiative decay from the intermediate state |e〉 is accounted for via the Lindblad

operator Lα =
√

Γp [|g〉〈e|]α (cf. Sec. 2.2.3) with Γp/(2π) = 6.1 MHz [64, 199]. The many-body
Lindblad superoperator is given by the sum of the individual Lindblad superoperators (2.23),

L[ρ(t)] =
∑
α

LLα [ρ(t)]. (2.45)

Here we assume the absence of of coherent processes such as superradiance and related
processes such as non-linear propagation and diffraction [180]. In fact, the parameter C =
n0λ

3
p/(4π2) [207] associated with cooperative effects is well below one for the atomic densities

used in this thesis. We also ignore the decay from the Rydberg state |r〉 since the corresponding
decay rate Γr/(2π) ≈ 3 kHz for |r〉 = |38s1/2〉 [72] is much smaller compared to Γp, which
sets the relevant timescale for the driven-dissipative background gas dynamics.
The Rydberg states |r〉 of the background atoms interact among themselves via van der

Waals interaction,
Hbg,int =

∑
α<β

V
(rr)
αβ [|r〉〈r|]β [|r〉〈r|]α , (2.46)

with V
(rr)
αβ = C6,rr/|Rα − Rβ|6. For |r〉 = |38s1/2〉, the van der Waals dispersion coeffi-

cient is given by C6,rr/(2π) = 530 MHzµm6; for |r′〉 = |17s1/2〉, we have C6,r′r′/(2π) ≈
7 kHzµm6 [208].

System-environment interaction

The system (i.e., the aggregate) and the environment (i.e., the background gas) interact via
state-dependent Rydberg-Rydberg interactions, namely interactions that depend on the states
(|p〉 vs. |s〉) of the aggregate atoms. For simplicity, we assume isotropic interactions, meaning
that the interaction between the state |p〉 and another Rydberg state |s〉, |r〉, |r′〉 only depends
on the separation between the two excitations and not on their orientation with respect to a
given quantization axis. Accordingly, the Hamiltonian describing the interactions between
aggregate and background gas atoms reads as

Hagg-bg =
∑
α,n

V (pr)
nα |πn〉〈πn| [|r〉〈r|]α +

∑
α,n,m 6=n

V (sr)
mα [|r〉〈r|]α |πn〉〈πn| (2.47a)

=
∑
α,n

V̄nα |πn〉〈πn| [|r〉〈r|]α, (2.47b)

where we introduced V̄nα = V
(pr)
nα +

∑
m6=n V

(sr)
mα , which denotes the overall interaction of the

specific background atom α with the entire aggregate if the latter is in the state |πn〉.
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The interaction between |r〉 and |s〉 is of van der Waals type, V (sr)
nα = C6,rs/|Rn−Rα|6 with

C6,rs/(2π) = −87 MHzµm6, while the interaction between |r〉 and |p〉 is parameterized via an ef-
fective R−4 scaling6, reading V (pr)

nα = C4,rp/|Rn−Rα|4 with C4,rp/(2π) = −1032 MHzµm4 [64].
Note that in principle, van-der-Waals forces are not additive [137, 209]. In our case, however,
for which n = n′ for the van der Waals interaction between the background atom states |r〉 or
|n− n′| > 2 for the interaction between |s〉 and |r〉, Ref. [137] suggests that we may assume
additivity, which we do indeed.
Using |r〉 as the Rydberg state of the background atoms allows us to have much stronger

interactions |V (pr)| � |V (sr)| between |p〉 and |r〉 as compared to |s〉 and |r〉 at interatomic
separations of a few µm. This difference in interaction strengths in particular leads to different
sizes of the critical radii depicted in Fig. 2.7,

Rc,p =
(2Γp|C4,rp|

Ω2
c

)1/4
' 1.93 µm, (2.48a)

Rc,s =
(2Γp|C6,rs|

Ω2
c

)1/6
' 1.03 µm, (2.48b)

where the numerical values are obtained for Ωc/(2π) = 30 MHz. In Sec. 2.3, in which we
address the imaging of excitation transport within the aggregate, these critical radii will play
a crucial role, since they will allow us to distinguish a |p〉 from an |s〉 excitation.

Using the state |r′〉 as Rydberg state of the background gas, we obtain significantly smaller
interactions, which are of van der Waals type, V (r′s)

nα = C6,r′s/|Rn −Rα|6 with C6,r′s/(2π) =
−0.1 MHzµm6 and V (pr)

nα = C6,r′p/|Rn −Rα|6 with C6,rp/(2π) = −0.4 MHzµm6 [64]. Here,
the interactions between |r〉 and |p〉 respectively |r〉 and |s〉 are very similar.

In addition to varying the Rydberg state (|r〉 vs. |r′〉) of the background atoms to control
the interactions between aggregate atoms and background gas we also vary the density n0
of the background gas. Combining the control over background atom Rydberg states and
background gas densities allows us to manipulate excitation transport even with a disordered
background gas, as detailed in Secs. 2.4.2 and 2.4.3.

Putting everything together

Assembling the Hamiltonians of aggregate (Eq. (2.41)), background gas (Eqs. (2.44) and
(2.46)), and their mutual interaction (Eq. (2.47)), as well as the Lindblad superoperators of
the background atoms (Eq. (2.45)), we arrive at the many-body master equation

ρ̇(t) = −i[Hagg +Hagg-bg +Hbg +Hbg,int, ρ(t)] + L[ρ(t)]. (2.49)

The master equation (2.49) constitutes the basis for calculations in this chapter.
We stress that while the numerical calculations performed in the following depend (via

the dispersion coefficients of the Rydberg interactions) on the state choices we made, the
concepts underlying our proposal do not. Similar results to the ones presented in this thesis
may be obtained using state or parameter choices different to the ones employed here. On that
account we list the conditions that need to be met by any viable state or parameter choice in
the subsequent sections. The main focus of these sections, though, lies on substantiating our
proposal by showing its feasibility with experimentally accessible parameters.

6Due to nearly resonant process |43p〉+ |38s〉 ↔ |41d〉+ |38p〉 resulting in a small Förster defect, V (pr) has
several significant dispersion coefficients. The R−4 form has been chosen to reproduce the same critical
radius Rc,p as the full interaction for our parameters [64].
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probe beam
coupling beam

CCD

Figure 2.9: Sketch of the imaging setup we have in mind. (a) Level scheme of the background gas
atoms. The interaction-induced energy shift ∆vdW shifts the Rydberg level |r〉 out of resonance. (b) An
ultracold atomic cloud is illuminated by a probe and a coupling laser beam, which are counter-aligned.
Background atoms with a distance smaller than the critical radius Rc to the Rydberg excitation absorb
the probe beam light while atoms with larger distances are transparent to the probe beam. A CCD
camera detects the difference in probe beam absorption.

2.3 Imaging excitation transport

In this section we show that excitation transport within the aggregate can be imaged using
the optical response of the background gas. Our setup thus provides an intrinsic means to
obtain information on the aggregate state. This is important since we are only interested in
the aggregate dynamics in this chapter.
The idea relies on the proposal of Ref. [77] (see also Ref. [82]), which has been recently

employed in Ref. [81] to observe diffusive dipole-mediated energy transport in an ultracold
Rydberg gas. With the help of Fig. 2.9, this imaging scheme can be summarized as follows:
Consider a single Rydberg excitation that is embedded in a background gas, visualized in
Fig. 2.9(b). The background gas is in an EIT configuration shown in Fig. 2.9(a), with the |r〉
state being a Rydberg state. Due to the interaction with the existing Rydberg excitation, the
Rydberg states of the background gas atoms are shifted out of resonance within a sphere with
radius Rc, rendering the background gas absorbing to the probe beam. Atoms outside the
blockade sphere are transparent to the probe beam (EIT effect). If the probe beam intensity
after propagation through the atomic cloud is measured by a CCD camera, an intensity
drop of the transmitted probe beam light (absorption shadow) can be measured around the
existing Rydberg excitation. This allows one to obtain information about the position of the
existing Rydberg excitation. We note that such a setup can also be used to measure the initial
Rydberg population in an atomic cloud [210] or even to reconstruct the full density matrix of
the background gas atoms [187].

There are, of course, other ways than imaging to experimentally access the aggregate state,
such as spatially-resolved field ionization [211] or fluorescence imaging [52, 196, 212, 213].
The reason we suggest using EIT-imaging of the aggregate dynamics nonetheless is to stress
the versatility of the setup: by the same means, excitation transport can be measured and
manipulated. This is the appeal of our setup. For the proposals of Secs. 2.5 and 2.6, where we
use only a small number of background atoms, other means than imaging are in fact better
suited to extract information on the aggregate state.

To be able to monitor excitation transport in our aggregate, the timescales associated with
aggregate dynamics, image acquisition and aggregate lifetime have to be compatible. This
leads to constraints regarding laser parameters, aggregate spacing, and background gas density.
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Table 2.2: Parameter set for optical aggregate monitoring.

Variable Symbol Numerical value

Number of aggregate atoms Nagg 11
Aggregate spacing d 19 µm
Probe Rabi frequency Ωp 2π × 1.3 MHz
Probe laser detuning ∆p 0 MHz
Coupling Rabi frequency Ωc 2π × 30 MHz
Coupling laser detuning ∆c 0 MHz
Radiative decay rate Γp 2π × 6.1 MHz
Lifetime of state |s〉a τ|s〉 87 µs
Lifetime of state |p〉a τ|p〉 159 µs
Background gas density n0 3.8× 1018 m−3

Background gas Rydberg state |r〉 —
Number of photons per image Nphot 100

a The lifetimes are calculated according to Ref. [72] for zero temperature T = 0, not taking black-body
radiation-induced depopulation of the Rydberg level into account.

We address these constraints in Sec. 2.3.1 and detail parameters for which we expect imaging
to be feasible. Exemplary numerical results also shown in this section support the feasibility
of imaging in our setup. It turns out that the imaging process does not leave the aggregate
dynamics unaffected. In fact, the measurement on the aggregate state performed via imaging
induces decoherence in the aggregate dynamics. This measurement-induced decoherence is
the topic of Sec. 2.3.2.

2.3.1 Using the environment as a probe
Parameter constraints

For our proposal to be experimentally accessible, we need a realistic set of parameters for
which imaging can be achieved. This set of parameters has to comply with several constraints.
The first set of constraints are imposed by the feasibility of imaging, viz. the feasibility of
extracting meaningful information about the excitation distribution in the aggregate. The
second set of constraints concerns the validity of our modeling. In this regard, we have to
revisit several assumptions (such as the neglect of atomic motion) made during the derivation
of the equations (2.33) and (2.49) and assess whether they still hold for the chosen parameters.

Our discussion is based on a chosen set of parameters, listed in Tab. 2.2. We show that this
parameter set indeed fulfills the given constraints. We do so by deriving the quantities, on
which the imaging constraints are imposed, from our chosen set of parameters and verify that
they comply with the given constraints. A summary of these derived quantities is listed in
Tab. 2.3. By fleshing out the dependence on the derived quantities on the various parameters
we also discuss the possibility of alternative parameter choices.

Feasibility of imaging
In order for the aggregate dynamics to be imageable, the timescales relating to background
atom dynamics, aggregate dynamics, and imaging have to be compatible. Introducing the
measurement time τimag, the time required to take an image, and the aggregate lifetime τagg,
we first of all need τimag < τagg. An even tighter bound on τimag is given by the condition that
τimag has to be smaller than the hopping time τhop, which denotes the timescale on which a
single Rydberg excitation significantly moves through the aggregate. Lastly, the background
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Figure 2.10: Time dependence of Im[χ], normalized to the two-level resonant susceptibility χ0, for
different parameters sets. (a) Effect of interaction-induced detuning on the EIT dynamics, comparing
resonant (solid blue) and off-resonant (∆c/(2π) = 200 MHz, solid red) dynamics, both using Ωp/(2π) =
1.3 MHz, Ωc/(2π) = 30 MHz, and Γp/(2π) = 6.1 MHz. (b) Effect of the coupling Rabi frequency
on resonant EIT dynamics. The three curves correspond to the sets (Ωc/(2π) = 30 MHz, orange),
(Ωc/(2π) = 10 MHz, green), and (Ωc/(2π) = 5 MHz, purple), all using Ωp/(2π) = 0.2 MHz and
Γp/(2π) = 6.1 MHz.

gas atoms need to adiabatically follow the aggregate dynamics. In particular, the timescale
on which the background atoms reach their steady state after the probe and coupling lasers
have been turned on — the EIT equilibration time τEIT — has to be small compared to the
imaging time τimag. This condition is required for consistency, since a direct connection (i.e.,
without solving the Maxwell-Bloch equations) between the absorption of the probe laser and
the susceptibility of the background atomic medium is only given in the steady state of the
atomic medium (see Sec. 2.2.4 and Ref. [161]).7 Consequently, any set of parameters has to
ensure that

τEIT < τimag < τhop < τagg. (2.50)

We first consider the shortest timescale, the EIT equilibration time τEIT. This is the
timescale on which the background atoms adapt their optical response to a given interaction-
induced energy shift of the Rydberg level once probe and coupling have been turned on. To
assess τEIT, we evaluate the atomic susceptibility for two different values of the coupling laser
detuning ∆c, namely ∆c = 0 MHz and ∆c/(2π) = 200 MHz. Here, zero detuning corresponds
to resonant excitation with negligible interaction-induced energy shift of the Rydberg level;
large detuning corresponds to an interaction-induced energy shift larger than the EIT width
γEIT (cf. Sec. 2.2.4). From the equilibration dynamics of the atomic susceptibility we then
estimate the EIT equilibration time τEIT. Note that, for a given state choice, this timescale
only depends on the laser parameters Ωp and Ωc.

In Fig. 2.10(a) we show the time dependence of Im[χ]/χ0 of a single background atom using
the laser parameters listed in Tab. 2.2, for ∆c = 0 MHz (blue curve) and ∆c/(2π) = 200 MHz
(red curve). The envelope of the blue curve can be fitted by a monoexponential, yielding
τEIT ≈ 0.1 µs. Albeit the optical response reaches its steady state only after t & 0.5 µs, a

7This condition can be relaxed for continuous measurement, i.e., if probe and coupling lasers are not switched
off after the measurement time τimag. In this case, as long as the susceptibility of the background atomic
medium adiabatically follows the excitation transport in the aggregate, imaging is feasible. Since the
timescale of the adiabatic motion is set by τhop rather than τimag, the requirement for imaging is weaker
here. Note, however, that as we show in Sec. 2.3.2, continuous measurement has certain disadvantages
compared to “stroboscopic” measurement, in which the lasers are turned off after the measurement.
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measurement performed at earlier times with a finite measurement time ∆t > 0.1 µs will
carry only a small error due to the oscillating nature of Im[χ]/χ0. For a large detuning
∆c/(2π) = 200 MHz of the Rydberg state, the optical response reaches its steady state at
t & 0.13 µs, but with a small ≈ 5% error at 0.1 µs. We thus estimate the EIT equilibration
time as τEIT ≈ 0.1 µs for the laser parameters listed in Tab. 2.2.
Figure 2.10(b) illustrates the dependence of τEIT on the coupling Rabi frequency Ωc, for

fixed Ωp/(2π) = 0.2 MHz and Γp/(2π) = 6.1 MHz. While decreasing the probe Rabi frequency
does not strongly affect τEIT (cf. the blue curve in panel (a) with the orange curve in panel (b)),
decreasing the coupling Rabi frequency results in a decreased frequency of the oscillations in
Im[χ]/χ0 and a larger amplitude of this oscillation. Choosing smaller values for the coupling
Rabi frequency is hence possible, provided that τEIT still fulfills τEIT < τimag. Choosing
a larger coupling Rabi frequency is, by contrast, not desirable, since this leads to smaller
differences in the critical radii Rc,p and Rc,s (cf. Eqs. (2.48)), which in turn impairs the
imaging time τimag, as detailed below.
To estimate the imaging time τimag, we need to elaborate more about the experimental

procedure we have in mind. Since the aggregate states are given by the two Rydberg states
|p〉 and |s〉, which both induce absorption around their respective positions, the discrimination
between the two states has to be achieved by employing the different sizes of the absorption
shadows associated with the critical radii Rc,p and Rc,s. Accordingly, determining the image
differential between two images taken at the same time after preparation of the aggregate but
(i) without a |p〉 excitation and (ii) with a |p〉 excitation present in the aggregate provides a
means for discriminating between |p〉 and |s〉 excitation. Information about the excitation
location, i.e., the location of the state |p〉, is hence only provided through the photons scattered
by the background gas atoms that are situated in the spherical shell defined by Rc,s < R < Rc,p.
In order to be experimentally accessible, the number of photons scattered by those atoms has
to be large enough. Here we assume that Nphot = 100 (proportional to CCD counts, assuming
a detection efficiency of ≈ 1) is a sufficient number of scattered information-carrying photons
for a single-shot image (i.e., during the imaging time τimag).

The scattering rate γphot of an absorbing background atom is given by the radiative decay
rate Γp, weighted with the population in state |e〉, γphot = Γpρee. Defining ∆ as the interaction-
induced detuning of the Rydberg state |r〉, the steady-state value ρ̃ee of the density matrix
element ρee reads as

ρ̃ee(∆) =
4∆2Ω2

p

4∆2(Γ2
p + 2Ω2

p) + (Ω2
p + Ω2

c)2 . (2.51)

For large detunings, ∆→∞, Eq. (2.51) simplifies to

ρ̃ee(∆→∞) =
Ω2
p

Γ2
p + 2Ω2

p

'
Ω2
p

Γ2
p

, (2.52)

where the second simplification corresponds to the weak-probe assumption, namely keeping
only terms up to second order in Ωp. Denoting the number of background gas atoms within a
sphere with radius Rc,s (Rc,p) by Nbg,s (Nbg,p), the imaging time τimag can be estimated via

τimag = Nphot
γphot(Nbg,p −Nbg,s)

. (2.53)

Using the parameters listed in Tab. 2.3 (which have been derived from the chosen parameter
set, Tab. 2.2), we obtain τimag ≈ 0.59 µs. Note that the imaging time depends on the Rabi
frequencies Ωp and Ωc as well as the background gas density n0. Short imaging times can
be achieved for large background densities, large probe Rabi frequencies, and small coupling
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Figure 2.11: (a) Hopping time τhop as a function of the aggregate spacing d. (b) Aggregate lifetime
τagg as a function of the number of aggregate atoms Nagg. The parameters chosen for the imaging
proposal as well as the corresponding timescales are indicated with dashed, gray lines.

Rabi frequencies. Large values for both background density and probe Rabi frequency are
restricted, however, by conditions regarding the validity of our modeling assumptions (see
below). Our parameter choice therefore balances both requirements.

The timescale of significant redistribution of excitation in the aggregate we estimate via the
hopping time τhop, i.e., the time it takes for the transition |π1〉 → |π2〉 in a diatomic aggregate
(dimer). For a dimer, the dipole-dipole Hamiltonian coincides with the resonantly-driven
two-level laser Hamiltonian, such that τhop can be estimated via the Rabi flopping time,

τhop = π

2W . (2.54)

For the parameters of Tab. 2.2, Eq. (2.54) yields τhop ≈ 1.06 µs. Note that this is a rough
estimate since the timescale for excitation transport in the aggregate actually depends on the
interaction with the background gas atoms (see Sec. 2.4.2).

The hopping time only depends on the aggregate spacing d. This dependence is displayed
in Fig. 2.11(a), with dashed, gray lines indicating our parameter choice. Significantly smaller
aggregate spacings than the chosen one are restrained by the condition τimag < τhop.
The aggregate lifetime τagg can be calculated from the individual lifetimes of the |p〉 and
|s〉 state listed in Tab. 2.2,

τagg =
(
Nagg − 1
τ|s〉

+ 1
τ|p〉

)−1

. (2.55)

In Figure 2.11(b) we illustrate this dependence of the aggregate lifetime on the number of
aggregate atoms. With increasing aggregate size Nagg, the aggregate lifetime τagg decreases.
Here we choose Nagg = 11, for which τagg ≈ 8.2 µs. If no further post-selection is applied, only
the short-time dynamics of the excitation transport can be experimentally probed for large
aggregates. Post-selection implies that only those experimental measurements are included in
the final analysis in which no aggregate atom has decayed during the experimental procedure.
This allows one to experimentally access excitation dynamics of larger aggregate sizes at the
cost of a increased number of experimental realizations.
Plugging in the timescales derived above and listed in Tab. 2.3 in Eq. (2.50), we find that

the parameters of Tab. 2.2 are compatible with the constraints required by a feasible imaging
procedure. We note that the comparison of time-scale constraints performed provides only a
first, rough estimate of the feasibility of imaging. In a given experimental setup, the estimate
needs to be refined, additionally considering the signal-to-noise ratio (cf. Refs. [77, 214]) as
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well as the optical resolution that can be achieved. We believe though that the proposed
imaging procedure is within experimental reach.

Model validity
We continue by addressing the validity of our model assumptions, namely the neglect of
(i) mutual Rydberg-Rydberg interactions in the background gas, (ii) motion of background
Rydberg atoms due to attractive van der Waals forces, and (iii) aggregate lifetime-reducing
effects pertaining to the high background-atom density.

(i) Mutual Rydberg-Rydberg interactions in the background gas. In our explanation of the
imaging mechanism, and likewise in the derivation of the timescale estimates, we have
not accounted for the interaction of background Rydberg atoms among themselves.
We have done so assuming that the fraction of Rydberg excitations in the background
gas is low, such that the absorption in the background gas is exclusively due to the
interaction with the aggregate atoms, and not due to interactions with Rydberg-excited
background gas atoms. To verify this assumption, we estimate the number of Rydberg
excitations within the spherical shell defined by Rc,s < R < Rc,p. If the probability for
a background-atom Rydberg excitation in this region is low, we can neglect the effect of
background Rydberg excitations on the imaging procedure.
With this in mind we consider the steady-state value of the Rydberg state with interaction-
induced detuning ∆,

ρ̃rr(∆) =
Ω2
p(Ω2

p + Ω2
c)

4Γ2
p∆2 + 8∆2Ω2

p + (Ω2
p + Ω2

c)2 . (2.56)

In the absence of interaction (∆ = 0), the Rydberg population reaches its maximum

pr ≡ ρ̃rr(∆ = 0) =
Ω2
p

Ω2
p + Ω2

c

'
Ω2
p

Ω2
c

, (2.57)

where the last relation follows in the weak-probe approximation, i.e., to second order in
Ωp. This allows us to define the blockade fraction fbl, the number of Rydberg excitations
within the spherical shell defined by Rc,s < R < Rc,p,

fbl = prn0 (Vol(Rc,p)−Vol(Rc,s)) ≈ 0.18, (2.58)

for the parameters of Tab. 2.2. Since fbl is not well below one, there might be a small
contribution of background Rydberg-Rydberg interactions to the measured background
gas absorption, which require post-selection in experiment. To reduce fbl, smaller probe
Rabi frequencies can be employed, at the expense of a larger imaging time.

(ii) Motion of background Rydberg atoms. In contrast to |ns, ns〉 van der Waals interactions,
which are repulsive over a wide range of principal quantum numbers (n . 235 for
rubidium [151]), in our setup, the interaction between aggregate and background gas
Rydberg states is attractive. Since the background gas atoms are not trapped in general,
a Rydberg-excited atom created in the background gas can accelerate towards the
aggregate, inducing unwanted effects such as the loss of an aggregate excitation due to
atom-atom collision. Hence, the imaging time τimag has to be smaller than the collision
time τcoll, i.e., the time it takes until two Rydberg-excited atoms with initial separation
R̄0 in an attractive pair-potential V (R) = −|Ck|/Rk collide. For the following exemplary
calculation, we assume van der Waals interaction ∝ R−6. The bare collision time τ ′coll,
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which is ignorant of the fact that background atoms are Rydberg-excited only with a
small probability, can be estimated by using energy conservation [215, 216],

V (R̄0) = V (R) + mred
2

(dR
dt

)2
, (2.59)

where mred = mRb/2 is the reduced mass of rubidium. Separating variables in Eq. (2.59)
and specifying van der Waals interaction V (R) = −|C6|/R6 allows us to evaluate

τ ′coll,s =
∫ R̄0

0

dR√
2m−1

Rb(V (R̄0)− V (R))
=
√
π Γ(2/3)

2 Γ(1/6) R̄4
0

√
mRb
|C6|

≈ 0.2156R̄4
0

√
mRb
|C6|

.

(2.60)
Similarly, the collision time can be evaluated for the ∝ R−4 interaction of the |p〉 state,
yielding τ ′coll,p ≈ 0.2995R̄3

0
√
mRb/|C4|. As initial distance R̄0 between the Rydberg

excitations we take the critical radius Rc,s for the |s〉 state and Rc,p for the |p〉 state.
Note that the mean nearest-neighbor distance [217]

R0 = 1
3

( 3
4πn0

)1/3
Γ
(1

3

)
≈ 0.35 µm (2.61)

is much smaller than both critical radii. The choice of the critical radius for the initial
distance hence relies on the fact that background gas atoms with smaller separation from
the aggregate than the critical radius experience a strong interaction-induced energy
shift of the Rydberg level, which inhibits population of the Rydberg state.
Due to the small fraction of Rydberg excitations in the background gas, the quantity that
we have to compare with the imaging time is the dressed collision time τcoll rather than
the bare collision time τ ′coll. The dressed collision time denotes the collision time with
the C-dispersion coefficient multiplied by the probability to be in the Rydberg state [87,
93], utilizing the analogy with Rydberg dressing (see also Refs. [88, 90–92]). This can
be seen by evaluating the expectation value of the aggregate-background interaction
V̄nα |πn〉〈πn| [|r〉〈r|]α (cf. Eq. (2.47)) in the steady state of the background gas:

Tr{V̄nα |πn〉〈πn| [|r〉〈r|]α ρ} = prV̄nα Tragg{|πn〉〈πn| ρagg}. (2.62)

Here, Tragg denotes the partial trace over the aggregate subspace, ρagg the aggregate
density matrix, and pr the population of the Rydberg state, defined in Eq. (2.57).
On account of the smaller critical radius Rc,s and the steeper potential slope, the
collision time τcoll,s associated with the |s〉 state sets the relevant timescale (cf. Tab. 2.3).
Calculating τcoll,s for our chosen parameter set, we find τcoll,s ≈ 8.8 µs, which is slightly
larger than the aggregate lifetime. Since τcoll,s is the collision time for a single |s〉
excitation, the total lifetime of the aggregate will be further reduced. This necessitates
post-selection or, alternatively, trapping of Rydberg atoms (cf. Ref. [218]).

(iii) Reduction of Rydberg aggregate lifetime due to high background density. If a Rydberg
excitation with high principal quantum number is embedded in a high-density gas (or
condensate) such that many ground state background gas atoms lie within a radius
corresponding to the extent of the Rydberg electron wave function, scattering between
the Rydberg electron and the ground state gas can lead to a reduction of the Rydberg
state lifetime [121, 219]. To ensure that this effect is negligible in our setup, we calculate
the number of background gas atoms in the spherical volume with radius given by the
expectation value of the radial coordinate of the electron in state |s〉 and |p〉, respectively.



2.3 Imaging excitation transport 37

We find that for our parameters at most Norb ≈ 0.03 atoms are enclosed in the Rydberg
orbit. Hence we do not expect lifetime-reducing effects due to Rydberg electron scattering
(in Ref. [121], significant lifetime reduction was observed for Norb > 103).

In addition, the high background gas densities pose questions concerning the validity of
using dispersion coefficients for parameterizing Rydberg-Rydberg interactions8. As to
this regard, we note that for the discrimination between |p〉 and |s〉 excitation via the
background gas we need our modeling to be reliable in the region between the critical
radii, since it is this region which facilitates imaging of the aggregate dynamics. This
region is on the order of a µm (cf. Eq. (2.48)), and hence larger than the distances at
which our modeling might be invalidated.

We further note that due to the high background atom density, the condition |χ| � 1
is not generally fulfilled in our setup, i.e., not for arbitrary laser parameters. (This
condition is required for the first-order Taylor expansion of the refractive index to be
valid, i.e., for the imaginary part of the optical susceptibility to be proportional to the
optical absorption of the laser beam, cf. Sec. 2.2.4.) For the laser parameters that we
have chosen, however, aborting the Taylor expansion of the refractive index after the
first term gives still a good approximation.

For an accurate modeling of an experimental imaging procedure for a three-dimensional
background gas, also effects pertaining to beam propagation have to be accounted for in
principle. For simplicity, we have not considered these effects, which depend on the specific
experimental setup. For a quasi-two-dimensional background gas surrounding the Rydberg
aggregate, for instance, such effects do not play a role.

Table 2.3 completes our discussion of parameter constraints for imaging, summarizing the
quantities employed to estimate the feasibility of an experimental realization of excitation
transport imaging. We conclude that the parameters listed in Tab. 2.2 fulfill the constraints
developed above.
Note that an measurement scheme for excitation dynamics in the Rydberg aggregate is

not restricted to the proposed imaging setup. In particular, other atomic states can be used
for the imaging, given that the constraints detailed above are fulfilled. (For example, states
with repulsive interactions between aggregate and background atoms are not subject to the
restrictions related to attractive interactions between aggregate and background atoms.) In
addition, one could imagine to place the background atoms on a lattice, at a distance R
fulfilling Rc,s < R < Rc,p. In such a way, imaging efficiency could be improved.

Exemplary numerical results

To illustrate the imaging of excitation transport via the background gas, we now consider an
exemplary numerical solution of the full master equation (2.49) for N = 3 aggregate atoms
and four background gas atoms in a one-dimensional geometry. The aggregate atoms are
placed on a linear chain with equidistant spacing d = 19 µm, in accordance with the parameter
set listed in Tab. 2.2.

To mimic the high background density n0 = 3.8× 1018 m−3, one would need to account for
a large number of background atoms in principle. This is intractable numerically, owing to the
exponential scaling of the Hilbert space associated with the background gas atoms. To include

8For an atom in the 87Rb |43s1/2〉 state and another in the |38s1/2〉 state, the LeRoy radius above which
exchange effects can be neglected is RLR ≈ 0.33 µm, for two atoms in the |38s1/2〉 state, RLR ≈ 0.29 µm.
Moreover, for small interatomic distances (< µm for the states considered), states get strongly mixed such
that perturbation theory, on which the notion of dispersion coefficients relies [151], can no longer be applied.
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Table 2.3: Summary of the quantities employed to estimate the feasibility of an experimental
realization of excitation transport imaging using the parameters of Tab. 2.2.

Variable Symbol Expression Numerical value

Hopping time τhop π/2× 1/W 1.1 µs
Aggregate lifetime τagg ((Nagg − 1)/τ|s〉 + 1/τ|p〉)−1 8.2 µs
EIT widtha γEIT ' Ω2

c/Γp 2π × 142 MHz
Critical radius for |p〉 Rc,p (2|C4,rp|Γp/Ω2

c)1/4 1.93 µm
Critical radius for |s〉 Rc,s (2|C6,rs|Γp/Ω2

c)1/6 1.03 µm
Blockade volume Vol(R) 4πR3/3
Blocked atoms around |p〉 Nbg,p n0Vol(Rc,p) 17
Blocked atoms around |s〉 Nbg,s n0Vol(Rc,s) 115
Photon scattering ratea γphot ' Ω2

p/Γp 2π × 0.25 MHz
Imaging timeb τimag Nphot(γphot(Nbg,p −Nbg,s))−1 0.6 µs
EIT equilibration time τEIT Fitted ≈ 0.1 µs
Bg. Rydberg fractiona pr ' Ω2

p/Ω2
c 0.002

Bg. blockade fraction fbl prn0(Vol(Rc,p)−Vol(Rc,s)) 0.18
Mean NN distance R0

1
3

(
3

4πn0

)1/3
Γ(1/3) 0.35 µm

Min. dist. between |r〉, |s〉 R̄0,s max[R0, Rc,s] 1.03 µm
Bare |s〉 collision time τ ′coll,s 0.2156R̄4

0,s

√
mRb/|C6,rs| 0.4 µs

Bg. |s〉 collision time τcoll,s 0.2156R̄4
0,s

√
mRb/(|C6,rs|pr) 8.8 µs

Min. dist. between |r〉, |p〉 R̄0,p max[R0, Rc,p] 1.93 µm
Bare |p〉 collision time τ ′coll,p 0.2995R̄3

0,p

√
mRb/|C4,rp| 1.0 µs

Bg. |p〉 collision time τcoll,p 0.2995R̄3
0,p

√
mRb/(|C4,rp|pr) 23 µs

Aggregate Rydberg orbit 〈r〉agg max[〈r〉|43p〉 , 〈r〉|43s〉] 0.13 µm
Bg. atoms in orbit Norb Vol(〈r〉agg)n0 0.03
a Numerical values calculated using the exact expressions. The expressions in the table are derived in
weak-probe approximation up to second order in Ωp.

b Here we assume that all scattered photons can be detected. For a more precise estimate, this needs to
be further weighted by the solid angle covered by the detector.

effects pertaining to small interatomic distances between the background gas atoms that
would occur in a high-density gas nevertheless, we distribute the four background gas atoms
in pairs of two with interatomic separation ∆R ≈ 0.3 µm. Such an interatomic separation
corresponds approximately to the mean nearest-neighbor distance in the dense gas (cf. Tab. 2.3).
Specifically, we randomly distribute two background atoms with uniform distribution in an
interval extending d/2 to the left (right) of the first (third) aggregate atom. The remaining
two background atoms are placed at a distance ∆R from the distributed background atoms
each. Distributing the background gas atoms in pairs allows us to include the effect of
significant interactions between background atoms on the imaging. (The Rydberg-Rydberg
interactions between two background gas atoms with interatomic separation ∆R ≈ 0.3 µm
yields V (rr)(∆R)/(2π) ≈ 730 GHz.)

We solve the master equation (2.49) via a stochastic unraveling, namely via the Monte-Carlo
wave function method (also called quantum jump method) [163, 220–223]. In general, a
stochastic unraveling of the master equation allows to access larger Hilbert spaces than the
density matrix formalism, since the density matrix is an object of size n̄2 where n̄ is the
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dimension of the underlying Hilbert space. In our case, the Hilbert space is n̄ = 34 × 3 =
243 dimensional. Furthermore, a stochastic approach is easily implemented on a parallel
architecture because different stochastic realizations (viz., trajectories) of the dynamics are
independent.9

From the stochastic trajectories, the exact master equation result is obtained by averaging
over a large ensemble of stochastic realizations. In the numerical implementation employed
in this section, we use a fixed numerical time step of δt = 5 × 10−4 µs and calculate 150
stochastic realizations for each of the ∼ 104 random distributions of background gas atoms.
The average optical susceptibility of the background gas χ(x, t) we approximate by spatial
binning of the individual susceptibilities χα(t) of the background atoms,

χα(t) = Γp
Ωp

Tr{[|g〉〈e|]α ρ}, (2.63)

according to

χ(x, t) =

∑
α,ℵ

δ
x,x

(ℵ)
α

Tr
{

Γp
Ωp

[|g〉〈e|]α ρ
(ℵ)(t)

}/∑
α

δ
x,x

(ℵ)
α
. (2.64)

Here, δ
x,x

(ℵ)
α

is 1 only if atom α in stochastic realization ℵ is positioned in the interval
[x−∆x/2, x+ ∆x/2) with bin size ∆x.
To monitor the excitation transport in the aggregate, we follow the procedure typically

employed in experiments in which single Rydberg excitations are imaged [77, 81, 187]. There,
to account for residual absorption and spatial inhomogeneity of the laser beams, besides the
image with a Rydberg excitation present, a reference image without Rydberg excitation is
taken, and the location of the Rydberg excitation is determined from the image differential.
Similarly, we here infer the location of the |p〉 state by subtracting a reference signal χref(x, t)
corresponding to the absorption of an empty aggregate (chain of only |s〉 states) from
χ(x, t). The susceptibility χref(x, t) we calculate from an initial state in which all aggregate
(background) atoms are in the |s〉 (|g〉) state; the susceptibility χ(x, t) we determine from an
initial state in which the aggregate is prepared in state |π1〉 and all background atoms are in
their ground state |g〉.

Figure 2.12 shows the resulting signal Im[χ(x, t)− χref(x, t)]/χ2lvl. The green lines indicate
the positions xn of the three aggregate atoms and their thickness the corresponding |p〉
populations pn(t). Starting from an excitation localized at the leftmost aggregate atom (|π1〉
state), the |p〉 excitation travels through the aggregate, with almost perfect excitation transfer
to the rightmost atom (|π3〉 state) at t ≈ 1.5 µs and recovery of the initial |π1〉 state at t ≈ 3 µs.
The resulting spatially-resolved absorption signal is shown in color coding. After a short
transient at t . 0.2 µs on which EIT establishes — visible via fringes in the color-coded signal
shown in Fig. 2.12 —, the absorption signal adiabatically follows the excitation dynamics.
This implies that the absorption signal is directly linked to the probability distribution
pn(t) = Tr{ρ |πn〉〈πn|} of the excitation. Consequently, background-background interactions
V

(rr)
αβ are relatively benign for the chosen states and densities.

9For reasons of numerical efficiency, we cut off state energies at Ecutoff = 600 MHz. This still amounts to a
full Rydberg blockade, but allows us to avoid using an infinitesimal numerical time step in the propagation.
That is, for our numerical implementation to be valid, the non-Hermitian Hamiltonian (more precisely, the
modulus of the largest eigenvalue of the Hamiltonian) multiplied with the numerical time step δt has to be
small compared to one [163, 222]. Since we use a fixed time step for the propagation, this implies that for
large interaction-induced state energies the numerical time step has to be infinitesimal small, rendering the
numerical procedure intractable. We hence employ an energy cutoff at Ecutoff .
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Figure 2.12: Difference in optical response between dynamic and empty aggregate Im[χ(x, t) −
χref(x, t)] during transport, normalized by the two-level response χ2lvl (cf. main text). Green lines
indicate the locations xn of the aggregate atoms and their thickness the populations pn(t). The spatial
bin size is ∆x = 0.5 µm. Apart from Ωp/(2π) = 0.2 MHz, the parameters are as listed in Tab. 2.2.

We note that the difference in susceptibilities Im[χ(x, t) − χref(x, t)] in Fig. 2.12 is not
normalized by χ0 but rather by χ2lvl,

χ2lvl = χ0
Γp
Ωp

Im[ρ̃ge] = χ0
Γ2
p

Γ2
p + Ω2

p

. (2.65)

This expression is more general than χ0, since it is not only valid in the weak-probe limit, in
which Γp � Ωp. In the simulation shown in Fig. 2.12, however, χ2lvl and χ0 are essentially
identical since Ωp/(2π) = 0.2 MHz is sufficiently small, yielding χ2lvl ≈ 0.999χ0.
In the case of a background gas that adiabatically follows the aggregate dynamics, the

susceptibilities of the individual background gas atoms can be directly related to the population
dynamics in the aggregate. Introducing the steady-state susceptibility χ̃(∆) of a single
background atom with detuning ∆ of the Rydberg state,

χ̃(∆) = Γp
Ωp

Im[ρ̃ge(∆)], (2.66)

the time-dependent absorption signal such as shown in Fig. 2.12 can be described by χα(t) =∑
n χ̃(V̄nα)pn(t). Here, the detuning ∆ accounts for the interaction V̄nα (defined below

Eqs. (2.47)) between a background atom α and an aggregate atom in state |πn〉. The steady-
state value of the density matrix element ρ̃ge in Eq. (2.66) can be straightforwardly evaluated
for a given set of laser parameters, yielding

ρ̃ge(∆) = 2∆Ωp(Ω2
c − 2iΓp∆)

4Γ2
p∆2 + 8∆2Ω2

p + (Ω2
p + Ω2

c)2 . (2.67)

We conclude this section by noting that the proposed imaging scheme does not rely on the
specific states chosen for the numerical simulation, particularly the R−4 interaction of the |p〉
state. The crucial property on which the scheme relies is the different sizes of the critical radii
Rc,s and Rc,p, which yield an experimentally resolvable difference in the absorption images,
thus allowing for excitation transport imaging. Other state choices with different dispersion
coefficients can be employed, as long as the chosen states feature distinguishable sizes of
critical radii. For example, higher-lying Rydberg states with larger critical radii may be more
advantageous for imaging applications.
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Figure 2.13: Exciton transport in a continuously monitored embedded Rydberg aggregate. Geometries
are shown in the top panels, with the blue and orange circle indicating the critical radius Rc,s and
Rc,p, respectively. (a) Site occupations pn(t) for n = 1, 2, 3 (solid red, dashed blue, dot-dashed black)
in a non-decohering case where δ = 0.55 µm; other parameters are as listed in Tab. 2.2. The orange
line counts the number of scattered photons nphot(t). (b) The same for a strongly decohering case with
δ = 1.5 µm, other parameters as in (a). The inset shows aggregate and excited state |e〉 population at
site 2 for a single stochastic (quantum jump) trajectory.

2.3.2 Measurement-induced dephasing
In the previous section, we have focused on the impact of the aggregate dynamics on the
dynamics of the background gas atoms. In particular, we have shown that excitation transport
in the aggregate can be measured using the intimate connection between the optical response
of the background atoms in the vicinity of the aggregate and the state of the aggregate. In
this section, we shift our focus to the back-action that measuring the aggregate state via the
background gas has on the aggregate dynamics.
Measuring the aggregate state via the background gas induces dephasing of the aggregate

dynamics. This effect could not be seen in Fig. 2.12, where we have chosen a small value
for the probe Rabi frequency, Ωp/(2π) = 0.2 MHz. Such a small probe Rabi frequency does
not comply with the parameter constraints required for experimentally accessible imaging,
as detailed in Sec. 2.3.1. Hence, the aggregate is only “weakly” measured in this case. This
indicates that the strength of the dephasing of the aggregate dynamics depends on the
“strength” of the measurement, i.e., the amount of information on the aggregate state that is
accessible via the optical response of the background gas atoms.

In fact, since a given background atom only provides significant information on the excitation
location if it is located in a ring between the two critical radii Rc,s < R < Rc,p, we expect
dephasing of the aggregate dynamics to strongly depend on the position of the background
atoms. To demonstrate that this is indeed the case, we consider again a linear chain of N = 3
aggregate atoms (an experimental realization of which can be found in Ref. [52]), with a
single background atom placed at a distance δ from each site, as shown in the top panels of
Fig. 2.13. According to the previous reasoning, dephasing should occur only if the background
atoms provide information on the excitation location. We thus examine two background
atom configurations, in which, (a) the background atoms do not provide information on the
aggregate state, and (b) the background atoms do provide information on the aggregate state.

(a) The background atoms are placed within the inner critical radius, δ < Rc,s < Rc,p. Since
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the interaction between the Rydberg |r〉 state of the background atoms and both |p〉 and
|s〉 states of the aggregate is large in this configuration, the background atoms scatter
photons irrespective of the state of the aggregate. Although the number of scattered
photons,

nphot(t) = Γp
∫

dt
∑
α

Tr {ρ(t) [|e〉〈e|]α} , (2.68)

is large (cf. orange line in Fig. 2.13(a)), no information is provided by those photons.
The aggregate dynamics in this case, also shown in Fig. 2.13(a), is the same as the
one obtained without background atoms present. The population oscillations proceed
coherently, which is best illustrated by the population p2 of the |π2〉 state, which exhibits
undamped oscillations over the full time interval [0, 6] µs.

(b) The background atoms are placed between the inner and the outer critical radius,
Rc,s < δ < Rc,p. Here, background atoms only scatter photons if the adjacent aggregate
atom is in state |p〉; the scattered photons thus provide information on the aggregate
state. Despite a smaller total number of scattered photons (nphot(6 µs) . 90 in this case
as compared to nphot(6 µs) ∼ 280 in case (a)), the dephasing of the aggregate dynamics
is strong, as can be seen in Fig. 2.13(b). Already after t = 6 µs, the |p〉 excitation is
fully delocalized over the aggregate, with p1 = p2 = p3 = 1/3.

The connection between information provided by the scattered photons and aggregate
decoherence can be clearly seen in the quantum-jump unraveling of the full master equation.
The inset of Fig. 2.13(b) shows for a single stochastic realization both the population p2 of
the second aggregate atom (dashed blue) and the |e〉 state population ρee,2 of the second,
adjacent background atom (solid green). The trajectory of the population ρee,2 of the second
background atom shows segments of continuous dynamics disrupted by discontinuous jumps,
which correspond to the emission of a photon. Whenever a jump occurs in the background
atom dynamics, the population p2 of the aggregate also displays discontinuous behavior.
Hence, photon emission directly affects the aggregate dynamics. Repeated measurement of the
aggregate population induces dephasing, in the same way as the Lindblad operator describing
dephasing of a certain state population is a projector onto this state [224]. (See Sec. 2.4.1 for
details on the form of the Lindblad operator in the aggregate subspace that corresponds to the
dephasing induced by a single background atom.) In literature, the link between measurement
and measurement-induced decoherence is called measurement-induced dephasing [225].
We emphasize that this link between photon emission and discontinuous jumps in the

aggregate state does not occur for the background atoms configuration shown in in panel (a).
There, single trajectories (not plotted) show no effect of quantum jumps on the aggregate
population.
Lastly, we comment on the implications of measurement-induced dephasing on aggregate

dynamics imaging. Since measurement induces dephasing of the aggregate dynamics, a
continuous measurement scheme is not well suited to study excitation transport within
the aggregate, as the observed dynamics is partly induced by the measurement process
itself. To obtain information on the aggregate state without strongly perturbing the aggregate
dynamics, it is thus preferable to abandon continuous measurement and employ a “stroboscopic”
measurement scheme instead. In a “stroboscopic” measurement scheme, a measurement would
only be performed during the image acquisition stage of duration τimag (see Sec. 2.3.1). The
time-resolution of the imaging would then arise from changing the waiting time between
preparation of the initial aggregate state and image acquisition, in this way allowing for the
monitoring of the aggregate dynamics with (discrete) spatial and temporal resolution. The
imaging sequence would then be given by
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1. Initialization of the aggregate (state preparation).

2. Free or background-controlled (cf. Secs. 2.4.2 and 2.4.3) aggregate evolution.

3. Image acquisition with duration τimag.

2.4 Simulating energy transport

Having shown the viability of excitation transport imaging, we now proceed with harnessing
the flipside of the information on the aggregate state obtainable through the background gas,
i.e., the decoherence introduced to the aggregate dynamics. The motivation behind this is
to provide a model system for studying the transition from coherent to incoherent energy
transport. In naturally occurring systems such as light harvesting complexes, energy transport
always proceeds under the interplay between the fundamentally coherent transport and the
coupling to the environment (cf. Refs. [44, 226–234]). To study the transition from coherent
to incoherent exciton transport, Haken, Strobl, and Reinecker (HSR) introduced a theoretical
model [235–239] that allows one to assess the impact of the different degrees of decoherence
on the transport.
In this section, we show that our setup allows for an almost ideal realization of the HSR

model. In particular, we show that energetic disorder and dephasing introduced by the
interaction with the background gas atoms can be controlled by the parameters of the lasers
driving the background atoms. Accordingly, the setup we propose allows not only to image
quantum energy transport, but also to experimentally study the transition from coherent
to incoherent energy transport. This will benefit the study of excitation transport in open
systems [40, 239, 240], be it semi-conductors or light harvesting complexes. Note that for
light harvesting complexes, extensions to exciton-vibrational coupling and non-Markovian
environments may be required [11, 41, 43, 46, 226, 241]; we thus address the route towards
non-Markovian aggregate dynamics in Sec. 2.5.

In Sec. 2.4.1 we derive an effective master equation for the aggregate alone, which furnishes
a HSR-type model for excitation transport. This is essential, since the background gas used
for providing decoherence to our aggregate consists of a large number of atoms, which impedes
a numerical study of decoherence effects on excitation transport by means of the full master
equation (2.49). We then show how the disorder and dephasing distributions, which introduce
decoherence to the aggregate dynamics and modify the excitation transport, can be controlled
via the background gas. Specifically, in Sec. 2.4.2 we discuss how Gaussian disorder and
dephasing can lead to diffusive excitation transport whereas non-Gaussian disorder, which
can cause transport of sub-diffusive kind, is studied in in Sec. 2.4.3.

2.4.1 Effective model for excitation transport

Even though excitation transport occurs only in the aggregate, in our current theoretical
description we have to solve the full master equation for both aggregate and background gas
if we want to theoretically study energy transport within the aggregate. For a background gas
consisting of a large number of background atoms, this is infeasible due to the exponential
size of the corresponding Hilbert space. For the theoretical study of excitation transport, we
are therefore interested in an effective model for the aggregate alone, in which the properties
of the background atoms enter only effectively, e.g., via energy shifts of the aggregate atoms
or additional dephasing terms. Besides, such an effective model might provide physical insight
into the aggregate dynamics that is concealed in the full description.
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The derivation of reduced, effective descriptions of open quantum systems has been a
long-standing problem, to which different routes have been developed. One prime route
involves the use of Feshbach-Zwanzig projectors [242, 243], which separate the degrees of
interest from the remaining degrees of freedom, which are treated as a bath. This allows for
the derivation of the Nakajima-Zwanzig equation [3–5, 244], a generalized master equation in
which approximations can be introduced in a systematic way. Other schemes employed to
reduce the complexity of the theoretical description rely on adiabatic elimination [245–247].
Here, initially not occupied states that couple only weakly and non-resonantly to initially
populated states are removed from the theoretical description of the initially populated states,
leading to additional energy shifts and couplings of those states [245]. The formalism developed
in Ref. [247] that we apply below relies on both techniques (Feshbach-Zwanzig projector
formalism and adiabatic elimination).

In order to derive an effective master equation for the aggregate alone, we regard the ground
state |g〉 of the background atoms as the state of interest for our theoretical description, with
the excited |e〉 and Rydberg |r〉 states introducing merely perturbative corrections to the
ground state dynamics. For the following reasons this point of view seems justified in the
regime of electromagnetically induced transparency, which we delimit via the conditions for
the laser parameters reading ∆p = ∆c = 0, Ωp � Ωc, and Ωp � Γp: (i) The steady state is
reached on a timescale much shorter than the aggregate dynamics, warranting a background
gas dynamics that adiabatically follows the aggregate dynamics. Using the quantities from
Tab. 2.3, defined in Sec. 2.3.1, this is fulfilled via τEIT � τhop. (ii) The populations of
Rydberg and excited state are generally small, both for no interaction-induced energy shift
(cf. Eqs. (2.51) and (2.57) for ∆ = 0), as well as large interaction-induced energy shift of the
Rydberg level (cf. Eqs. (2.52) and (2.56) for ∆ → ∞). Here, the numerical values for the
parameters of Tab. 2.2 and zero (infinite) interaction-induced detuning of the Rydberg state
read ρ̃ee(∆ = 0) = 0 (ρ̃ee(∆→∞) ≈ 0.04) and ρ̃rr(∆ = 0) ≈ 0.002 (ρ̃rr(∆→∞) = 0).
Hence, we can derive an effective model for the aggregate in the EIT regime, assuming

further that Rydberg-Rydberg interactions among the background atoms can be neglected (cf.
the discussion in Sec. 2.3.1). The derivation is detailed in Appendix A.2. We find that the
evolution of the reduced aggregate density matrix ρ(agg) =

∑
nm ρnm |πn〉〈πm| obeys

ρ̇(agg) = −i[Hagg +Heff , ρ
(agg)] +

∑
α

L
L

(α)
eff

[ρ(agg)], (2.69)

with the respective effective operators in the case ∆p = ∆c = 0 and to second order in Ωp

reading as

Heff =
∑
n

[∑
α

Ω2
p

Ω2
c

V̄nα

1 + (V̄nα/Vc)2

]
|πn〉〈πn| , (2.70a)

L
(α)
eff =

∑
n

[
Ωp√
Γp

1
i+ Vc/V̄nα

]
|πn〉〈πn| . (2.70b)

The competing energy scales here are V̄nα as defined in Eq. (2.47), the overall interaction of the
background atom α with the entire aggregate if the latter is in the state |πn〉, and Vc, the critical
interaction-induced Rydberg state detuning marking the transition from EIT transparency to
absorption. In terms of the EIT width, Vc is defined as Vc = γEIT/2 ≈ Ω2

c/(2Γp).
In addition to the original aggregate Hamiltonian, the effective equation (2.69) for the

reduced aggregate density matrix ρ(agg) contains two new terms. One is the effective Hamilto-
nian (2.70a), which describes an energy shift of aggregate site n due to the interaction with
the level |r〉 of the background atoms, weighted by the steady-state occupation of state |r〉
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[cf. Eq. (2.57)]. Consequently, the states |πn〉 where the |p〉 excitation is localized at different
sites n experience different energy shifts, leading to site-energy disorder in the aggregate. The
interpretation of Eq. (2.70a) in terms of energy shifts will be substantiated in more detail in
Sec. 2.4.2.
The other term (2.70b) is a Lindblad term, whose real part accounts for the dephasing

caused by background atom α. The dephasing strength is set by the two-level atom photon
scattering rate γphot ≈ Ω2

p/Γp within the critical radius of an aggregate atom [cf. the discussion
preceding Eq. (2.52)]. The imaginary part of the Lindblad term (2.70b) can be interpreted
as contributing to the energy shift of the aggregate states, as will be discussed in Sec. 2.4.2.
Note that the Lindblad term (2.70b) captures the dependence of the dephasing strength
caused by a background gas atom on its location, which we discussed in Sec. 2.3.2. That is, a
background atom positioned such that photons scattered from it do not provide information
on the excitation location in the aggregate, viz. the aggregate state |πn〉, does not contribute
to aggregate decoherence. This can be seen by noting that if a background atom α is located
within the inner critical radius such that Vc � V̄nα regardless of the excitation location n,
the Lindblad term L

(α)
eff becomes proportional to a unit matrix and hence does not cause any

decoherence (since O in the superoperator LO[ρ] commutes with ρ).
The effective equations (2.70) derived for the parameter regime of EIT are of particularly

simple form, which enabled us to identify the contributions to disorder and dephasing caused
by a single background atom α. The assumptions, however, under which the effective model
was derived may also hold for parameters outside the EIT regime. Extending the effective
model to allow for laser detunings, Eqs. (2.70) become Eqs. (A.25),

Heff =
∑
n

[∑
α

Ω2
pṼnα(Ω2

c + 4Ṽnα∆p)
Ω4
c + 8Ṽnα∆pΩ2

c + 4Ṽ 2
nα(Γ2

p + 4∆2
p)

]
|πn〉〈πn| , (2.71a)

L
(α)
eff =

∑
n

[
2iṼnα

√
ΓpΩp

2Ṽnα(Γp − 2i∆p)− iΩ2
c

]
|πn〉〈πn| , (2.71b)

where we denote the total energy shift of the Rydberg level of background gas atom α induced
by the aggregate in state |πn〉 by Ṽnα = V̄nα − ∆p − ∆c. For details on the derivation of
Eqs. (2.71), see Appendix A.2.
The relative contributions of disorder and dephasing terms can be controlled through the

EIT laser parameters, as well as by choosing Rydberg states with different interactions. Note
that the effective equation (2.69) furnishes a Haken-Strobl-Reineker type model [239] for
excitation transport. All scenarios from dominant dephasing to dominant disorder can be
realized by varying the intermediate state detuning ∆p while keeping the two-photon detuning
fixed: ∆p + ∆c ≈ 0. In particular, for large intermediate state detunings ∆p, the contribution
of dephasing can be significantly reduced, as we will see in Sec. 2.4.3.

Validation of the effective equation

We now comment on the validity and the limitations of the effective equation (2.69), on which
we rely in further calculations. For this purpose we again consider the setup we used for the
illustration of measurement-induced dephasing in Sec. 2.3.2, namely a linear chain of N = 3
aggregate atoms with a single background atom placed at a distance δ from each site, as
shown in the top panel of Fig. 2.14.
In Fig. 2.14(a) and (b) we show the same excitation transport dynamics as plotted in

Fig. 2.13, but this time including the effective model results, which are indicated by color-
matched diamonds. We see that both the case of strong dephasing, Fig. 2.14(b), as well as
the case of no dephasing, Fig. 2.14(a), is well reproduced by the effective model (see panels



46 Chapter 2 Shaping environments for Rydberg aggregates

dδ

0.0

0.5

1.0

p n

(a) (b)

−1
0
1
×10−2

−2
0
2

×10−4

0 1 2 3 4 5 6
Time [µs]

0.0

0.5

1.0

p n

(c)

0 1 2 3 4 5 6
Time [µs]

(d)

−5
0
5
×10−3

−2
0
2

×10−2

Figure 2.14: Comparison of site populations pn plotted in red, blue, green for the populations of sites
n = 1, 2, 3 obtained by the full master equation (2.49) [solid lines in (a)-(d)] and the effective model,
Eqs. (2.69) and (2.71) [diamonds in (a)-(d)]. The geometry is shown in the top panel, the small panel
above each labeled plot details the deviations pn − pn,eff between full and effective equation. The first
row (a)-(b) shows the cases previously depicted in Fig. 2.13 with parameters taken from Tab. 2.2, using
δ = 0.55 µm in (a) and δ = 1.5 µm in (b). The plots shown in the second row (c)-(d) are obtained
in the presence of an intermediate-state detuning ∆p/(2π) = −20 MHz with Ωp/(2π) = 12 MHz,
Ωc/(2π) = 90 MHz, Γp/(2π) = 6.1 MHz, d = 24 µm and ∆c/(2π) = 22 MHz, δ = 0.53 µm in (c)
whereas ∆c/(2π) = 20 MHz, δ = 0.3 µm in (d). Note that the Rydberg state of the background atoms
is |r′〉 in panels (c) and (d), which has much smaller dispersion coefficients than the state |r〉 used in
panels (a) and (b).

above (a) and (b), in which the deviations between effective model and full master equation
are shown). This is in accordance with the conclusions drawn from the analytic form of
Eq. (2.70b), i.e., that a background atom with large V̄nα does not introduce dephasing to
the aggregate. Although excitation dynamics is shown only for two specific values of δ, also
intermediate values yield good (albeit in some cases slightly worse) agreement with the full
master equation, thus confirming the validity of the effective model for the parameter regime
of Tab. 2.2.

In Fig. 2.14(c) and (d) we show excitation dynamics in a different regime that will become
important later, namely the two-photon excitation regime, which we delimit via the following
conditions on the laser parameters: ∆p+∆c ≈ 0, Ωp < ∆p, and Ωp < Ωc. These conditions are
fulfilled by the parameters used in the figure, (∆p + ∆c)/(2π) = 2 MHz, ∆p/(2π) = −20 MHz,
Ωp/(2π) = 12 MHz and Ωc/(2π) = 90 MHz. Besides, instead of the state |r〉, the state
|r′〉 is used as Rydberg state of the background atoms, leading to smaller interactions
V (pr)(δ) ≈ −113 MHz, V (sr)(δ) ≈ −28 MHz in panel (c). The resulting dynamics, which is
well reproduced by the effective model, is almost coherent. Figure 2.14(d) depicts excitation
dynamics for larger interactions corresponding to smaller distances δ, for which stronger
dephasing arises. Apart from small deviations around t ' 6 µs, the dynamics is again well
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Figure 2.15: Populations pϕk
of the aggregate eigenstates |ϕk〉 (with Ek−1 < Ek) for the parameters

of Fig. 2.14(b). Solid lines indicate solutions obtained by solving the full master equation (2.49).
Color-matched diamonds show the results of the effective model (2.70) [panel (a)], as well as the
extended model (2.73) [panel (b)]. The small panel above each labeled plot details the deviations
pk − pk,eff between full and effective (a) respectively extended effective (b) equation.

captured by the effective model.10 We thus conclude that the effective model indeed reproduces
the full master equation in the parameter regimes of both EIT and two-photon excitation.

To assess the limitations of the effective model, it is instructive to evaluate not only aggregate
populations, but also coherences. We will do so by looking at the populations of the aggregate
eigenstates. This allows us to determine to which degree coherences within the aggregate are
captured by the effective model.

The aggregate eigenstates |ϕk〉 of the aggregate Hamiltonian are superpositions of the |πn〉
states,

|ϕk〉 =
∑
n

cnk |πn〉 . (2.72)

For the N = 3 aggregate, on which we focus here in our comparison between effective equation
and full master equation, the eigenenergies in case d = 19 µm read as E1 ≈ −2 MHz,
E2 ≈ −0.19 MHz, and E3 ≈ 2.2 MHz. Note that since we include next-nearest-neighbor
interaction in the aggregate HamiltonianH(3×3)

agg , the eigenergies are not equispaced, as opposed
to the aggregate Hamiltonian (2.42).
Evaluating the populations of the eigenstates |ϕk〉 for the parameters of Fig. 2.14(b), we

obtain Fig. 2.15(a), in which the full master equation results (effective equation results)
are represented by solid lines (color-matched diamonds). In stark contrast to the faithful
reproduction of the aggregate populations |πn〉 in Fig. 2.14(b), the effective model fails
in capturing the eigenstate dynamics. In particular, the effective equation predicts equal
populations of the aggregate eigenstates in the steady state as opposed to the full master
equation, which predicts larger occupations of states with lower eigenenergies. This can be
understood from the form of the Lindblad operators (2.70b), which are essentially projectors
on the localized aggregate states |πn〉. The dephasing introduced by such Lindblad operators
introduces fluctuations to the energies of the localized states and so destroys the coherences
10The reason that the effective model, which relies on treating the ground-state coupling to the “excited” state

manifold spanned by |e〉 and |r〉 as a perturbation, is still valid for a relatively strong probe Rabi frequency
Ωp/(2π) = 12 MHz is that the detuning ∆p effectively reduces the coupling, inhibiting significant excitation
of the intermediate state |e〉.
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between the aggregate states |πn〉, thereby producing a totally mixed aggregate state [224].11

Note that this behavior is actually a shortcoming of the original Haken-Strobl-Reinecker
model, which yields an equal distribution of aggregate eigenstates corresponding to infinite
temperature in the case considered here (i.e., equivalent sites) [248]. Hence, our HSR-type
model fails to produce thermal distributions of aggregate eigenstates, which would be highly
desirable for the simulation of an aggregate at finite temperature. Harnessing the tunability
of the environment provided by the background atoms, we show in Sec. 2.6 that in our
setup, thermal distributions of aggregate eigenstates can indeed be prepared using reservoir
engineering, thus extending the scope of our setup and opening new avenues for simulating
non-equilibrium dynamics with ultracold atoms.
The limitations of the effective model Eq. (2.71) can be partially overcome by taking

into account the interaction between the aggregate atoms in the derivation of the effective
model. Taking accordingly the aggregate eigenstates as the starting point of the perturbative
expansion (as outlined in Appendix A.2), we attain an extended effective model (A.28),

Heff =
∑
n,m

∑
α,k

κnmk Ω2
p

2

[
(Ṽnα − Ek)

2(Ṽnα − Ek)(2Ek + 2∆p + iΓp) + Ω2
c

+ (Ṽmα − Ek)
2(Ṽmα − Ek)(2Ek + 2∆p − iΓp) + Ω2

c

])
|πn〉 〈πm| , (2.73a)

L
(α)
eff =

∑
n,m

(∑
k

−2Ωp
√

Γp(Ṽnα − Ek)κnmk
2(Ṽnα − Ek)(2Ek + 2∆p + iΓp) + Ω2

c

)
|πn〉 〈πm| , (2.73b)

where we defined κnmk = cnkc
∗
mk.

Figure 2.15(b) shows the results obtained using this model for the parameters of Fig. 2.15(a).
The extended version of the effective model reproduces the occupations of the aggregate
eigenstates. This can be understood by considering the effective Lindblad operator Leff of the
extended effective model. Since Leff has not been derived starting from the localized aggregate
states |πn〉 but rather from the aggregate eigenstates, the dephasing terms introduce fluctua-
tions to the eigenstate energies rather than the energies of the localized states. Coherences
between localized states are thus allowed for in the steady state.

We note that the extended effective model (2.73) still relies on a perturbative description of
the “excited” states |e〉 and |r〉, which sets a strong constraint on the range of validity of the
model. In fact, numerical evidence indicates that the extended effective model yields worse
agreement with the full master equation than the effective model considering the populations
of localized aggregate states in the two-photon excitation regime, for example, using relatively
large probe Rabi frequencies such as Ωp/(2π) = 12 MHz. The benefit of the extended model
is rather to be seen in its success in describing aggregate coherences. In the following two
sections, Sec. 2.4.2 and Sec. 2.4.3, we will be interested in the aggregate populations only and
will make use of the relatively simple structure of Eqs. (2.71), such that we resort again to
the initial effective model.

2.4.2 Gaussian disorder and dephasing

In this section we show that the effective Hamiltonian as well as the effective Lindblad terms
arising in the effective model can indeed be understood as introducing site-energy disorder
and site-specific dephasing to the aggregate. In particular, we show that the disorder and
11A totally mixed state is totally mixed in any basis since the corresponding density matrix is proportional to

the unit matrix.
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dephasing distributions are approximately given by Gaussian distributions for the background
gas parameters employed for excitation dynamics imaging in Sec. 2.3.1, which gives rise to
diffusive excitation transport in the aggregate.

To analyze the disorder and dephasing introduced by the background gas and to assess its
influence on the aggregate dynamics, we evaluate the action of Eqs. (2.69) on the density
matrix elements. For a Lindblad operator L consisting of sums of projectors with complex
rates γ such as in Eq. (2.70b), L =

∑
n γn |πn〉〈πn|, the action of L on the density matrix can

be cast into the form

LL[ρ]nm = −1
2
(
|γn|2 + |γm|2 − 2γnγ∗m

)
ρnm. (2.74)

Defining further a resonant dipole-dipole interaction matrix W with Wnn = 0 to capture the
dynamics induced by the aggregate Hamiltonian (2.41), we arrive at a more explicit form of
the HSR-type master equation (2.69),

ρ̇(agg)
nm =

∑
k

i(Wkmρ
(agg)
nk −Wnkρ

(agg)
km ) + i(Em − En + εnm)ρ(agg)

nm − γnm
2 ρ(agg)

nm , (2.75)

with the different contributions reading as

En =
∑
α

H(nα)
eff , (2.76a)

γnm =
∑
α

(|L(nα)
eff |

2 + |L(mα)
eff |2 − 2Re[L(nα)

eff L
(mα)∗
eff ]), (2.76b)

εnm =
∑
α

Im[L(nα)
eff L

(mα)∗
eff ]. (2.76c)

Writing out the HSR-type model (2.69) in the density matrix components, as done in Eq. (2.75),
allows us to interpret the contributions of the effective Hamiltonian and Lindblad operators,
respectively. In particular, the structure of En and γnm in Eq. (2.75) suggests the interpretation
of En as diagonal disorder [249] and γnm as dephasing. The interpretation of εnm is less clear
since it depends on two indices n,m. Numerical evaluation shows, however, that for the EIT
parameters listed in Tab. 2.2, εnm can be approximated by

εnm ∼ 2
∑
α

(
H(nα)

eff −H(mα)
eff

) ∣∣∣∣
C4,rp=0

. (2.77)

Thus, εnm can be approximated by sums of contributions arising from single aggregate sites12,
and consequently the term i(Em − En + εnm)ρnm in Eq. (2.75) can be cast into the form
i(E′m − E′n)ρnm, with E′k = Ek − 2

∑
αH

(kα)
eff |C4,rp=0. This is the reason we refer to εnm as to

a correction to the diagonal disorder.
To study the effect of the background gas atoms on the aggregate dynamics, we now analyze

the disorder and dephasing distributions that arise from many realizations of a disordered
background gas. To this end, we define the distributions PE(En − 〈En〉), Pε(εnm − 〈εnm〉),
and Pγ(γnm). Here, the site energies En (their correction εnm) have been adjusted by the
site-energy mean (site-energy correction mean), which is different for each realization. More

12The Gaussian distribution Pε in Fig. 2.16(a)(ii) is reproduced by this expression with a standard deviation
overestimating the correct one by ∼ 10%. Note that this does not hold true for all sets of parameters,
specifically not for those of Tab. 2.4 corresponding to non-Gaussion disorder. For these parameters, however,
εnm is negligible.
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Figure 2.16: (a) Histograms of disorder and dephasing distributions (i) PE , (ii) Pε, (iii) Pγ , using
the parameters listed in Tab. 2.2. The red line in (i) indicates a Gaussian fit with mean 0 and variance
≈ 2π × 0.95 MHz. (b) Excitation transport in the absence of disorder and dephasing, with parameters
as in (a) but Ωp = 0. (c) Effect of disorder and dephasing on the excitation transport, arising from
the disorder and dephasing distributions shown in (a). Note the different scales of the y axes and
the square-root scaling of the color map. (d) Variance of the excitation location (crosses), fitted by
σ2
n(t) = Stξ. From top to bottom, the parameters are as in (b) and (c), but with N = 31 instead of
N = 11 for the ξ = 2 case. The distributions in (a) leading to the diffusive excitation transport (d) are
calculated from an ensemble of Nℵ = 2× 103 realizations of background gas positions.

precisely, the ensemble arising from many different realizations ℵ of background atom positions
that underlies the distribution of site energies PE(En − 〈En〉) reads as

∑
n,ℵ

(
E(ℵ)
n − 1

N

N∑
m=1

E(ℵ)
m

)
. (2.78)

A similar relation applies for the site-energy correction εnm. The distributions PE , Pε, and
Pγ quantify the probabilities with which an individual background atom α contributes to
disorder and dephasing in an ensemble average over background atom positions. Note that
we focus here on the effects expected from a background gas of homogeneous density. By
placing background atoms deterministically, the dynamics of the aggregate can be tailored
more accurately via the control over background atom positions, as well as laser parameters.
Shaping environments for the aggregate using deterministically placed background atoms is
discussed in Sec. 2.5 and Sec. 2.6.
As an example, we consider a linear chain of N = 11 aggregate atoms with spacing

d = 19 µm, embedded in a background gas confined to a box with dimensions 209× 8× 8 µm
(in x× y × z direction), with background gas atoms extending 4 µm beyond the aggregate
positions in the y and z direction while 9.5 µm in the x direction. Taking into account
5 × 104 background atoms corresponding to a density of n0 = 3.8 × 1018 m−3 and the
laser parameters of excitation transport imaging, listed in Tab. 2.2, we obtain the site energy
disorder and dephasing distributions shown in Fig. 2.16(a)(i)-(iii). For the sake of presentation,
the maximum of the distributions PE , Pε, and Pγ has been set to one. This implies that the
distributions as shown are not normalized according to a probability distribution.

The disorder and dephasing distributions (i)-(iii) show that we find Gaussian distributions
[cf. the Gaussian fit in Fig. 2.16(a)(i)] in the case of resonant EIT excitation. Gaussian
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distributions for the site energies are often employed as convenient choices to study the
effect of an ambient environment on exciton transport [250]. Our setup thus provides a link
to exciton transport simulations using simple Gaussian site-energy disorder models. The
dominant energy scale of the dephasing distribution indicated in Fig. 2.16(a)(iii) we expect to
lead to strongly-damped aggregate dynamics. Note that disorder and dephasing strength can
be controlled via the laser parameters in principle, as discussed previously in Sec. 2.4.1.

Figure 2.16(b) and (c) show examples of excitation transport within the aggregate, visualizing
the effect of strong disorder and dephasing on the energy transport. In the presence of the
strong disorder and dephasing depicted in (a), the coherent excitation transport shown in
Fig. 2.16(b) gets significantly slowed down [cf. panel (c)].

To quantify this effect, we examine the spatial width of the excitation distribution over ag-
gregate sites σ2

n =
〈
n2〉−〈n〉2, with the expectation values indicating an ensemble average over

many realizations. The spatial width σ2
n(t) carries the transport signatures, as demonstrated

in Fig. 2.16(d). Parametrizing σ2
n(t) = Stξ, we find ξ = 2 for Ωp = 0, which signifies ballistic

transport. In contrast, for the disorder and dephasing distributions of Fig. 2.16(a) we obtain
ξ = 1, which is what we expect for diffusive transport. Dominant dephasing of the aggregate
dynamics through measurement thus leads to diffusive excitation transport, similarly to what
was observed experimentally in Ref. [81]. (See also Ref. [251] for a theoretical investigation of
coherent and diffusive excitation transport in a chain of Rydberg atoms.) We verified that
the results of Fig. 2.16(a) and (d) are not artifacts of box size or ensemble size Nℵ.

Before discussing how more exotic forms of disorder could be realized, let us remark that it
is a great advantage of the effective model that it allows us to cast its action on the density
matrix components into the form (2.75). This is not possible with the extended model, whose
action on the density matrix elements (considering only the Lindblad terms) reads as

ρ̇(agg)
nm =

∑
α,k,l

[
−1

2
(
L

(knα)∗
eff L

(klα)
eff ρ

(agg)
lm + L

(klα)∗
eff L

(kmα)
eff ρ

(agg)
nl

)
+ L

(mkα)∗
eff L

(nlα)
eff ρ

(agg)
lk

]
, (2.79)

where L(kmα)
eff = (L(α)

eff )km. It follows that no attribution of the resulting terms similar to
Eq. (2.75) is possible.

2.4.3 Non-Gaussian disorder
In the previous section we have seen that the parameter regime used for excitation transport
imaging via EIT induces dominant dephasing that gives rise to diffusive transport, and that
the corresponding disorder and dephasing distributions are Gaussian-shaped. A Gaussian
distribution for the site energies is, however, not always the appropriate model for the effect
of a surrounding environment on the aggregate. For instance, single-molecule studies on
chlomophores embedded in a glassy host have shown indications of non-Gaussian disorder
distributions such as Lévy stable distributions [252–254]. Excitation transport can be crucially
modified in the presence of such heavy-tailed disorder [255]. It is therefore of interest to
extend the range of possible disorder distributions that can be simulated with our setup.

To assess the flexibility of the proposed setup regarding more exotic disorder distributions
and excitation transport regimes, we now abandon the EIT imaging parameters listed in
Tab. 2.2 and turn to a different setting with (i) weaker and more similar Rydberg-Rydberg
interactions between background atom state |r′〉 and aggregate states |s〉 and |p〉, (ii) lower
background gas density, and (iii) appreciable laser detuning of the intermediate state |e〉 of
the background atoms (two-photon excitation regime). We will see that this modified setting
allows for the realization of non-Gaussian site-energy disorder distributions and negligible
dephasing. The reasons are detailed below, and can be summarized as follows: Due to (i)
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Table 2.4: Parameter set for generating non-Gaussian disorder. Only the parameters are listed
that are modified with respect to the imaging parameters listed in Tab. 2.2.

Variable Symbol Numerical value

Aggregate spacing d 24 µm
Probe Rabi frequency Ωp 2π × 12 MHz
Probe laser detuning ∆p 2π × (−20) MHz
Coupling Rabi frequency Ωc 2π × 90 MHz
Coupling laser detuning ∆c 2π × 22 MHz
Background gas density n0 9.5× 1017 m−3

Background gas Rydberg state |r′〉 —

and (ii), only outliers in the background gas contribute to the site-energy disorder, and (iii)
guarantees that dephasing is reduced compared to the site-energy disorder introduced by the
background atoms.

Parameter constraints

Turning away from the parameter set specified for excitation transport imaging, listed in
Tab. 2.2, to the one listed in Tab. 2.4, we again have to verify that the assumptions of our
modeling, here the assumptions under which the effective equation (2.69) has been derived,
are still fulfilled by the new set of parameters. This we do by revisiting the triad of Sec. 2.3.1,
addressing the neglect of (i) mutual Rydberg-Rydberg interactions in the background gas,
(ii) motion of background Rydberg atoms due to attractive van der Waals forces, and (iii)
aggregate lifetime reducing effects pertaining to the background atom density. Subsequently,
we comment on timescale constraints required for the validity of approximating the aggregate
dynamics by the effective equation (2.69), and show that these are met by our parameter
choice listed in Tab. 2.4.

(i) Mutual Rydberg-Rydberg interactions in the background gas. Our effective model has
been derived under the assumption that mutual Rydberg-Rydberg interactions among
background gas atoms are negligible. Hence, we have to verify that this assumption is
still valid for the parameters of Tab. 2.4. In the case of nonzero detuning ∆p and ∆c,
the Rydberg fraction of the background atoms in the steady state can be calculated via

ρ̃rr(∆p,∆c) =
Ω2
p(Ω2

p + Ω2
c)

4Γ2
p∆2

p+c + (Ω2
c − 4∆p∆p+c)2 + 2Ω2

p(4∆2
p+c + Ω2

c) + Ω4
p

, (2.80)

where we denoted the sum of probe and coupling laser detuning, ∆p + ∆c, as ∆p+c. For
the parameters of Tab. 2.4, we obtain pr′ = ρ̃r′r′(∆p,∆c) ≈ 0.02.
Figure 2.17(a) shows the Rydberg population pr′ as a function of the coupling laser
detuning ∆c. For off-resonant excitation, the Rydberg population pr′ is no longer a
Lorentzian centered at ∆c = 0. Accordingly, pr′ can increase in the presence of an
interaction-induced energy shift of the Rydberg |r′〉 level. The notion of Rydberg
blockade has thus lapsed; repulsive van der Waals interactions between |r′〉 states with
C6,r′r′/(2π) ≈ 7 kHz µm6 > 0 can compensate for the two-photon detuning −(∆p + ∆c)
and thereby enhance Rydberg excitation of the |r′〉 state (cf. Refs. [195, 223]).
In Fig. 2.17(b) we show pr′ as a function of the interatomic distance between a ground-
state and a Rydberg-excited background atom using ∆c → ∆c − Cr′r′/R6. (Here, the
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Figure 2.17: Rydberg population pr′ of a background atom (a) as a function of the coupling laser
detuning ∆c and (b) as a function of the interatomic distance from an existing background-gas Rydberg
excitation, using ∆′c = ∆c − Cr′r′/R6.

repulsive van der Waals interaction enters with a minus sign since ∆c enters with a
minus sign in the Hamiltonian (2.44).) We see that the repulisve background-atom
Rydberg-Rydberg interaction favors the creation of another Rydberg excitation at a
distance ∆R ≈ 0.21 µm from an existing one, with pr′(∆R) ≈ 0.09. Due to the low
background gas density n0, however, the probability to find a background gas atom in a
suitable distance is well below 10%. Taking further into account the small probability
pr′ ≈ 0.02 to off-resonantly excite a background gas Rydberg excitation in the first place,
the probability for background gas excitations further drops. For this reason we do not
expect Rydberg-Rydberg interactions within the background gas to have an effect on
our effective modeling of excitation transport.

(ii) Motion of background Rydberg atoms. Evaluating the estimates introduced in Sec. 2.3.1
with the parameters of Tab. 2.4, we find that the dressed collision times τcoll,s and τcoll,p
are given by τcoll,s ≈ 8.1 µs and τcoll,p ≈ 4.4 µs, respectively (see Tab. 2.5). Note that
we have used the mean nearest-neighbor distance R0 ≈ 0.56 µm here as the initial
distance of the two Rydberg excitations to evaluate τcoll,s and τcoll,p, since for off-resonant
excitation we cannot rely on the standard concept of a blockade radius [cf. reasoning in
(i)]. In addition, we have taken into account the interaction-induced energy shift at R0
for the calculation of pr′ , pr′ = ρ̃r′r′(∆p,∆c − Cr′a/R6

0) with a ∈ {s, p}.
Both collision times τcoll,s and τcoll,p are shorter than the aggregate lifetime τagg (cf.
Tab. 2.3). This implies that in the case of off-resonant excitation, the interaction-induced
lifetime-reduction of the aggregate comprises a challenge to an experimental realization
of energy transport studies. We believe though that this challenge can be tackled by
post-selection, trapping of Rydberg atoms, or parameter optimization.

(iii) Aggregate lifetime reducing effects due to high background density. Aggregate lifetime
reduction due to Rydberg electron scattering is even lower for the parameters of Tab. 2.4
as compared to the EIT parameters listed in Tab. 2.2. Specifically, using the parameters
of Tab. 2.4 we obtain Norb ≈ 0.01; thus we do not expect lifetime-reducing effects due
to Rydberg-electron scattering.

We now comment shortly on the applicability of the effective equation (2.69) for the
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Table 2.5: Summary of the quantities employed to estimate the feasibility of an experimental
realization of non-Gaussian site-energy disorder, using the parameters of Tab. 2.4.

Variable Symbol Expression Numerical value

Hopping time τhop π/2× 1/W 2.1 µs
Bg. equilibration time τSS Fitted ≈ 0.1 µs
Bg. Rydberg fraction pr′ ρ̃r′r′(∆p,∆c) 0.02
Mean NN distance R0

1
3

(
3

4πn0

)1/3
Γ(1/3) 0.56 µm

Bare |s〉 collision time τ ′coll,s 0.2156R4
0

√
mRb/|C6,r′s| 1.0 µs

Bg. |s〉 collision time τcoll,s 0.2156R4
0

√
mRb/(|C6,r′s|pr′) 8.1 µs

Bare |p〉 collision time τ ′coll,p 0.2156R4
0

√
mRb/|C6,r′p| 0.51 µs

Bg. |p〉 collision time τcoll,p 0.2156R4
0

√
mRb/(|C6,r′p|pr′) 4.4 µs

Aggregate Rydberg orbit 〈r〉agg max[〈r〉|43p〉 , 〈r〉|43s〉] 0.13 µm
Bg. atoms in orbit Norb Vol(〈r〉agg)n0 0.01

parameters of Tab. 2.4. In particular, for the effective equation to be valid, we need the
timescale of the background atom dynamics, i.e., the timescale on which ground, intermediate,
and Rydberg state reach their steady state, to be short compared to the aggregate dynamics.
Fitting a monoexponential to the Rydberg state population of a single background atom for
the parameters of Tab. 2.4, we find τSS ≈ 0.1 µs. In the presence of an interaction-induced
energy shift of ∆int/(2π) = −100 MHz arising from background-aggregate interactions at an
interatomic distance smaller than the mean nearest-neighbor distance R0, we find τSS ≈ 0.4 µs.
The timescale of the aggregate dynamics we estimate via the hopping time τhop ∼ π/(2W ),
which is ≈ 2.1 µs for the parameters listed in Tab. 2.4. Thus we have indeed τSS < τhop.

Besides, we need that the populations of both intermediate |e〉 and Rydberg |r′〉 state
are small; else, adiabatic elimination of these states is not appropriate. Due to the large
detuning of the intermediate state, we find ρ̃ee ≈ 3× 10−5 for the parameters of Tab. 2.4, and
pr′ ≈ 0.02. Note that in contrast to background-atom Rydberg-Rydberg interactions, which
are repulsive, the interactions between background and aggregate atoms are attractive, such
that neither Rydberg nor intermediate state population can be enhanced by the interaction
between background and aggregate atoms.

The reasoning from the previous two paragraphs indicate that our assumption of an adiabatic
background gas is justified and hence the use of the effective model, which we have already
verified in Fig. 2.14, where we compared the effective model results with results obtained by the
full master equation. The quantities employed to estimate the feasibility of an experimental
realization of non-Gaussian site-energy disorder in our setup are summarized in Table 2.5.
Lastly, we discuss the parameter choice listed in Tab. 2.5. To that end, we consider the

infinite-interaction limit Ṽnα → −∞ of the components of the effective Hamiltonian Hnαeff and
Lindblad term Lnαeff [cf. Eqs. (2.71)],

lim
Ṽnα→−∞

H(nα)
eff ≡ H(nα)

eff↑ =
∆pΩ2

p

Γ2
p + 4∆2

p

, (2.81a)

lim
Ṽnα→−∞

L
(nα)
eff ≡ L(nα)

eff↑ = −2
√

Γp∆pΩp

Γ2
p + 4∆2

p

. (2.81b)

In the two-photon excitation regime, both H(nα)
eff and L(nα)

eff are extremal for Ṽnα → −∞. Thus,
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Figure 2.18: (a) Effective Hamiltonian components H(nα)
eff↑ and (b) effective dephasing rates (L(nα)

eff↑ )2

in the infinite-interaction limit Ṽnα → −∞ as a function of the background intermediate state detuning
∆p, with parameters of Tab. 2.4. The dashed lines indicate ∆p = 0.

considering the parameter dependencies of Eqs. (2.81) allows us to estimate the parameter
dependencies of the energy scales associated with energy disorder and dephasing.

Figure 2.18 shows the numerical values ofH(nα)
eff↑ and (L(nα)

eff↑ )2 as a function of the intermediate
state detuning ∆p, with other parameters taken from Tab. 2.4. The reason for displaying
(L(nα)

eff↑ )2 instead of L(nα)
eff↑ is that the dephasing rates in the effective model are related to the

square of the Lindblad operator components, see Eq. (2.76b). To achieve dominant disorder,
the dephasing rates have to be small compared to the disorder scale, which is set by the
components of H(nα)

eff [see Eq. (2.76a)]. Contrasting panel (a) with panel (b) in Fig. 2.18,
we find that both dephasing and disorder scale decreases with increasing intermediate state
detuning ∆p. Since the dephasing scale decreases faster, however, ∆p can be chosen to meet
the requirements of both large disorder scale and small dephasing scale. We did so by choosing
∆p/(2π) = 20 MHz.

The probe Rabi frequency Ωp in Tab. 2.4 has been chosen to balance the requirement of
large disorder scale [cf. Eqs. (2.81)] and applicability of the effective model, i.e., the condition
that pr′ is small. Similarly, large coupling Rabi frequencies lead to small values of pr′ , which
is required for our modeling approximations (neglect of background Rydberg interactions in
the derivation of the effective model and adiabatic elimination) to be valid. The two-photon
resonance condition ∆p + ∆c ≈ 0 in turn guarantees that the disorder scale vanishes for
negligible background-aggregate interaction Ṽnα = V̄nα − (∆p + ∆c)→ 0. This ensures that
disorder arises from outliers in the background atom distribution, as will be discussed below.

Note that the scale relevant for the aggregate dynamics is not the absolute disorder scale, but
rather the disorder scale compared to the dipole-dipole interaction. To increase the visibility
of the effect pertaining to disorder in the aggregate dynamics, the aggregate spacing d has
been reduced in Tab. 2.4 in comparison with the aggregate spacing specified for excitation
transport imaging in Tab. 2.2.

Numerical results

To assess excitation transport properties and disorder and dephasing distributions for the
parameters listed in Tab. 2.4, we again consider a linear chain of N = 11 aggregate atoms
with spacing d = 24 µm, embedded in a background gas confined to a box with dimensions
264×5×5 µm (x×y×z), with background gas atoms extending 2.5 µm beyond the aggregate
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Figure 2.19: (a) Histograms of disorder and dephasing distributions (i) PE , (ii) Pε, (iii) Pγ , using the
parameters of Tab. 2.4. The red line in (i) indicates for comparison a Gaussian fit with mean 0 and
variance ≈ 2π× 0.3 MHz. (b) Effect of site-energy disorder on a single excitation-transport realization,
with parameters as in (a). Note the square-root scaling of the color map. (c) Variance of the excitation
location (crosses), fitted by σ2

n(t) = Stξ, using parameters as in (a) but with N = 31 instead of N = 11.
The standard deviation of σ2

n(t) obtained by Gaussian error propagation of the standard error of the
mean (SEM) is indicated in yellow shading. Both (a) and (c) have been calculated from an ensemble
of Nℵ = 5× 103 realizations of background gas positions.

positions in the y and z direction while 12 µm in the x direction. Distributing 6270 background
atoms corresponding to a density of n0 = 9.5× 1017 m−3 and using the laser parameters of
Tab. 2.4, we obtain the site energy and disorder distributions shown in Fig. 2.19(a)(i)-(iii).
For the sake of presentation, the maximum of the distributions PE , Pε, and Pγ has again been
set to one.
Here, the dephasing rates are small compared to the variations in the site energies. This

has been achieved via the detuning from the intermediate level, which reduces the influence
of spontaneous emission and makes dephasing weaker than disorder. Remarkably, for the
low background density and weak interactions employed, we find significant outliers in the
atomic distance distribution that cause a non-Gaussian, and in particular “heavy-tailed”
disorder distribution PE . The large and rare site energy fluctuations leads to strongly-varying
excitation transport in single realizations. Figure 2.19(b) shows an exemplary single realization
of transport in the presence of the non-Gaussian disorder distribution shown in panel (a). The
asymmetric excitation transport indicates that different aggregate sites have different energies.
The effect of the different single excitation-transport realizations on the excitation transport
in an ensemble average is displayed in panel (c). Fitting the spatial width of the transport
arising from the distributions (a) by σ2

n = Stξ, we find sub-diffusive transport with ξ = 0.69.
(Note that the precise value of ξ depends on the fit range, which is [3, 10] µs in Fig. 2.19(c).)

To study the various excitation transport regimes that can be realized in our setup quanti-
tatively, one would need to vary the disorder distribution PE . We do not aim here to give a
detailed account of the dependence of ξ on shape and energy range of PE (always relating
the latter to the energy scale given by the nearest-neighbor dipole-dipole interaction), as well
as box size and ensemble size Nℵ. Rather, the calculation performed in Fig. 2.19 serves as
an illustration of how site energy disorder and dephasing in the aggregate can be tuned in
our setup and demonstrates that this gives rise to excitation transport which is no longer
of ballistic or diffusive kind. To experimentally realize a specific disorder distribution, more
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Figure 2.20: Dependence of the effective potentials H(aα)
eff on the interatomic separation between a

single aggregate atom in state a ∈ {s, p} and background atom α. The case a = p is indicated in solid
red, the case a = s in solid blue. The potential shapes obtained for the parameters of Tab. 2.4 are
depicted in (a), the shapes resulting from the imaging parameters listed in Tab. 2.2 in (b).

detailed calculations are required; in particular, it may turn out that controlled placement of
individual background atoms using microstructured optical traps may be more advantageous
than using a random background gas.

To understand the difference between the non-Gaussian disorder distributions presented in
Fig. 2.19 and the Gaussian disorder distributions presented in Fig. 2.16, it is instructive to
consider the Pearson correlation coefficient between the site energies for different realizations,
which is defined as

corr(En, Em) = E[(En − µEn)(Em − µEm)]
σEnσEm

. (2.82)

Here, En(m) is the site energy of site n (m), µEn(m) denotes the expectation value of site
energy En(m) with respect to the ensemble given by different realizations of background atom
positions, and σEn(m) denotes the standard deviation of the site energy of site n (m). For
the site energies underlying Fig. 2.19(a)(i), which exhibit non-Gaussian energy disorder, the
correlation coefficient (2.82) of the bare site energies (not adjusted by the site-energy mean)
indicates large correlations, corr(En, Em) ∼ 0.97 for n 6= m. This implies that the effective
interaction Ṽnα = V̄nα −∆p −∆c between an aggregate site and a background gas atom α is,
for small densities and weak, similar interactions, mainly given by the sum of the detunings
−(∆p + ∆c) plus rare outliers. More precisely, since the interactions V (pr′)

nα and V
(sr′)
nα are

similar, also the site-energy shifts caused by Ṽnα are similar, apart from rare realizations of
background-atom positions that lead to stronger site-energy shifts.
The asymmetric, non-Gaussian shape of Fig. 2.19(a)(i) emerges from the shape of the

components H(aα)
eff of the effective Hamiltonian Heff . Figure 2.20(a) shows the effective

potentials arising from the interactions V (pr′)
nα (solid red) and V (sr′)

nα (solid blue) as a function
of the background-aggregate distance. We have chosen the background gas density n0 such
that the mean nearest-neighbor distance R0 ≈ 0.56 µm (cf. Tab. 2.5) falls in the tail of H(aα)

eff ;
therefore, only outliers in the atomic distance distribution give rise to appreciable site energy
shifts. This explains the “heavy-tailed” disorder distribution PE in Fig. 2.19(a)(i).
The strong correlations between the bare site energies, which we interpret as indicators

for a site-energy statistics that is dominated by outliers, is only present for the parameters
of non-Gaussian disorder, listed in Tab. 2.4. In particular, for the imaging parameters
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listed in Tab. 2.2, which lead to Gaussian disorder [see Fig. 2.16(a)(i)], the site-energy
correlations between different realizations of background-atom positions are significantly
decreased, corr(En, Em) ∼ 0.46 for n 6= m. This can be understood by considering again the
components H(aα)

eff of the effective Hamiltonian. Figure Fig. 2.20(b) shows H(aα)
eff as a function

of aggregate-background distance for the two interactions V (pr)
nα and V (sr)

nα . Since here H(aα)
eff

features distinct distance-dependencies, the site-energy shifts caused by the interaction with
the background gas are intrinsically more distinct, leading to smaller correlations among the
site energies in a single realization of background-atom positions.

Note that the correlation coefficient (2.82) is reduced to corr(En, Em) ∼ 0.1 for n 6= m for
the site energies of both Fig. 2.16(a) and Fig. 2.19(a) if they are adjusted by the site-energy
mean as in Eq. (2.78). This indicates that the energy fluctuations between different realizations
of background-atom positions are indeed captured by the ensemble (2.78).

In summary, we have shown that the background gas can serve as a controlled environment
for the aggregate, modifying the excitation transport through the aggregate. Parameters
can be found for which the background gas realizes an environment providing dominant
dephasing and dominant site-energy disorder, respectively, to the aggregate. Site-energy
disorder distributions can be further tuned to be of non-Gaussian shape. Given that the
dynamics involving other states than the ground state of the background atoms can be treated
as a perturbation to the ground-state dynamics, an effective model for the energy transport
within the aggregate can be derived, which is described by a master equation of HSR type.
The effect of disorder and dephasing on energy transport within the aggregate can thus be
experimentally studied, which shows that our setup implements a flexible quantum simulator.
This quantum simulator could be further extended by including the analogue of internal
molecular vibrations engineered as in Ref. [84]; disorder distributions could be controlled
even further using an additional class of background atoms [256]. The aggregate dynamics
can be extracted using either EIT detection discussed earlier or by different means [51]. All
these features would extend the HSR-type model proposed here to quantum simulations
of light-harvesting processes in a similar spirit but with complementary technology to the
proposals of Refs. [11, 257, 258].

2.5 Tuning non-Markovianity of aggregate dynamics
In the previous section we have seen that the setup proposed in Sec. 2.2.5 can serve as a quantum
simulator for excitation transport with a controlled environment, and have derived an effective
equation for the aggregate alone. In this effective equation, the effect of the environment was
incorporated via a correction to the aggregate Hamiltonian and additional, time-independent
Lindblad terms. The dynamics described by such a Lindblad equation is Markovian, which
implies in particular that information flows unidirectional to the environment but never flows
back. In this section, we show that our environment can also exhibit memory [65]: information
that flows into our environment can flow back. The the back-action of the environment onto
our system thus depends on previous system dynamics, which renders the system dynamics
non-Markovian.
The interest in a non-Markovian quantum simulator is twofold. Firstly, in many physical

systems, the environment consists of a large number of degrees of freedom at finite temperature.
Such an environment often exhibits a back-action onto the system that depends on previous
system dynamics. Secondly, from a practical point of view, a memoryless (Markovian)
environment enables one to derive simple equations of motion for the system alone, such as the
Lindblad equation [259], which allows for efficient numerical solution. For strongly-coupled
environments or environments with memory, typically sophisticated and numerically expensive
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Figure 2.21: Conceptual sketch of our setup. A “system” of Rydberg atoms, the Rydberg aggregate,
is coupled to a laser-driven atomic “environment”, which is dissipative through its coupling to the
electromagnetic continuum.

methods such as path integral approaches [260] and hierarchical equations of motion [261–
263] are required. From this point of view, it would be advantageous to possess a quantum
simulator that can capture the non-Markovian dynamics of a system not accessible to numerical
approaches on present-day conventional computers.
Accordingly, non-Markovian quantum simulators [264–266] have been proposed to study

energy transport [11, 12, 239, 257, 267] such as arising in the initial stage of photosynthesis.
There, the electronic degrees of freedom are coupled to a structured vibrational environment,
posing severe challenges to the efficient numerical simulation of excitation transport on
classical computers. Here, the environment of our model system we use to study non-
Markovian excitation transport consists of a single background atom. As we will show, this
allows us to control the degree of Markovianity in our setup, thus paving the way towards a
non-Markovian quantum simulator harnessing ultracold Rydberg atoms.

The exploitation of a single background atom as an “environment” may seem unusual, given
the more typical situation where the environment is characterized by a particularly large
number of quantum states. One should not forget, though, that the modeling of the background
atom includes spontaneous emission from the intermediate state |e〉 via a Lindblad term. This
Lindblad term embodies the coupling of the background atom to an electromagnetic radiation
field, which acts as a bath to the background atom. Hence, the three-level background atom is
only part of a nested environment (cf. Refs. [60–62, 66, 268–272]), which is driven-dissipative.
This is illustrated in Fig. 2.21, in which our setup is depicted from a conceptual point of
view. The tunability of the environment arises through its composition of a finite part, the
laser-driven three-level atoms, and an infinite part, the photon bath. By tuning the parameters
of the lasers addressing the environment atoms, the timescale of the dynamics within the finite
part can be controlled. Besides, the coupling strength between Rydberg system and atomic
environment can be controlled via the positions of the atoms constituting the environment, as
well as via the laser parameters.

We emphasize that the calculations performed in this section, which show that the degree
of Markovianity can be controlled in our setup, are meant to demonstrate the flexibility
and versatility of our environment consisting of laser-driven background atoms. Tailoring an
atomic environments that is able to emulate the environment of a certain molecular aggregate
is a formidable task, which remains to be done.
The system we consider is sketched in Fig. 2.22(a). For simplicity, we do not consider

an extended aggregate here, but a Rydberg dimer, i.e., a Rydberg aggregate consisting of
N = 2 atoms with interatomic distance d. The environment consist of a single laser-driven
background atom, which is placed at a distance δ from the first aggregate atom, at a right
angle to the connecting line between the aggregate atoms and in such a way that the atoms
are arranged in a planar geometry. Calculations with larger aggregates and background atom
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Figure 2.22: Sketch of the setup. (a) Two aggregate atoms form a Rydberg dimer with interatomic
separation d. The environment is given by a laser-driven background atom placed at a distance δ
from the first aggregate atom, such that the vectors along d and δ respectively enclose a right angle.
(b) Level sketch of the setup. The dimer states |π1〉 and |π2〉 are coupled to each other via resonant
dipole-dipole interaction with strength W and interact with the Rydberg level |r〉 of the background
atom via the effective interactions V̄1 and V̄2. The level scheme of the background atom is the same as
in Fig. 2.9(a).

numbers are presented in Sec. 2.6.
The level diagram including the interactions between Rydberg dimer and background atom is

depicted in Fig. 2.22(b). The localized dimer states |π1(2)〉 (corresponding to the configurations
with the |p〉 excitation at site 1(2)) are coupled via resonant dipole-dipole interaction W .
Their effective interaction with the background atom is denoted by V̄n = V̄nα, with index
α = 1 dropped since we have only a single background atom (V̄nα = V

(pr)
nα +

∑
m6=n V

(sr)
mα ).

The interaction V̄n between aggregate and background atom conserves the population of the
Rydberg dimer. The background atom is addressed by two lasers, a probe laser with Rabi
frequency Ωp and detuning ∆p coupling the ground |g〉 and the intermediate state |e〉, and a
coupling laser with Rabi frequency Ωc and detuning ∆c coupling intermediate state |e〉 to the
Rydberg state |r〉. The intermediate state |e〉 decays via spontaneous emission with rate Γp
to the ground state. We ignore the decay of the Rydberg state |r〉, which has a much longer
lifetime than the state |e〉 (cf. Sec. 2.2.5). Note that the findings of this section do not rely on
the specific Rydberg states chosen, but on the state-dependence of interactions between dimer
and background atom, which, in principle, can also be achieved with different choices.

2.5.1 A measure for non-Markovianity
To quantify the degree of non-Markovianity in our Rydberg dimer, we need to employ an
appropriate non-Markovianity measure. Over the last few years, a suitable measure to quantify
non-Markovianity in an open quantum system has been actively pursued and debated (see e.g.
Refs. [270, 273–291]), as well as used to gain insight into the dynamics of physical systems [264,
271, 292, 293]. In what follows, we adopt a measure related to the information flow from
the environment to the system, introduced in Ref. [273]. By this definition, the dynamics is
non-Markovian whenever the trace distance quantifying the distinguishability between two
initial density operators of the system increases at some point during their time propagation.

The trace distance between two density matrices ρ1 and ρ2 is defined as

D(ρ1, ρ2) = 1
2 Tr {|ρ1 − ρ2|} , (2.83)
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with |ρ| =
√
ρ†ρ. The rate of change of the trace distance for some initial states ρ1(0) and

ρ2(0) reads as

σ(ρ1(t), ρ2(t)) = d
dtD(ρ1(t), ρ2(t)), (2.84)

where ρ1(2)(t) denotes the time-evolved density matrix with initial state ρ1(2)(0). Whenever
σ > 0, the dynamics is said to be non-Markovian, as the distinguishability between two initial
states increases, which can be interpreted as information flowing back from the environment
to the system [273]. Markovian dynamics conversely is characterized by a unidirectional
information flow towards the environment, which can be described using quantum dynamical
semigroups [3, 273]. To quantify the strength of non-Markovianity, given the initial states
ρ1(0) and ρ2(0), the rate σ(ρ1(t), ρ2(t)) has to be integrated over all time intervals in which it
takes a positive value:

Nρ1,ρ2 =
∫
σ>0

dt σ(ρ1(t), ρ2(t)). (2.85)

Note that in order for Nρ1,ρ2 to fulfill the properties of an actual measure, maximization over
all pairs (ρ1(0), ρ2(0)) has to be performed in Eq. (2.85) [273, 277].
In the following, we take as initial states ρ(tot)

1 (0) = |π1〉〈π1| ⊗ |g〉〈g| and ρ
(tot)
2 (0) =

|π2〉〈π2|⊗|g〉〈g|, which can be easily prepared (and probed) experimentally and have numerically
shown to yield large values Nρ1,ρ2 [294]. Note that we have dropped the superscript (agg)
here to indicate the reduced density matrix of the aggregate, but use the superscript (tot)
instead to indicate the full density operator of aggregate plus environment atom.
The aggregate states ρn(0) = Trbg{ρ

(tot)
n (0)} with the subscript bg indicating the partial

trace over the background atom states, have maximal initial trace distance, D(ρ1(0), ρ2(0)) = 1.
Upon calculating the full dynamics of both Rydberg dimer and background atom, we evaluate
the trace distance D(ρ1, ρ2) and the corresponding rate of change σ(ρ1, ρ2) in the subsystem of
interest (dimer) by tracing out the environment first and subsequently applying the definitions
Eqs. (2.83) and (2.84).

The above method allows us to quantify non-Markovianity without having to deal with the
specifics of the environment. This stands in contrast to definitions of non-Markovianity that
explicitly depend on properties of the environment, such as a delta-correlated bath correlation
function [4, 272], which is typically employed as a definition of Markovianity for environments
consisting of harmonic oscillators [5]. A drawback of a measure that only requires knowledge
about system degrees of freedom is, however, that the full system dynamics has to be evaluated
before the non-Markovianity of the dynamics can be quantified. Besides, not all instances of
non-Markovianity can be witnessed by the trace-distance based approach (2.85) [283, 284].

2.5.2 Model system results

Having established a way to quantify the degree of non-Markovianity in our Rydberg dimer
dynamics, we now show illustrative calculations, which demonstrate that, despite its simplicity,
the environment provided by the background atom is highly tunable, and in particular that
the time evolution of the dimer can be tuned from Markovian dynamics to various degrees of
non-Markovian dynamics.
We start by demonstrating the tunability of the dimer dynamics via the environment

constituted by the background atom by means of a single laser parameter, namely the probe
Rabi frequency Ωp. In Fig. 2.23(a) we show different dimer dynamics arising for different
Rabi frequencies Ωp of the probe field driving the background atom, indicating that both
dephasing strength and steady-state value of the dimer dynamics can be easily controlled via
the parameters of lasers acting on the background atom.
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Figure 2.23: Dimer dynamics for three different values of the Rabi frequency Ωp. Panel (a) shows
the population p1 of state |π1〉 for the initial state ρ(tot)

1 (0), and panel (b) the trace distance change
rate σ(ρ1, ρ2) between ρ1(t) and ρ2(t), which correspond to initial preparation in ρ(tot)

1 (0) and ρ(tot)
2 (0),

respectively. The parameters are Γp/(2π) = 6.1 MHz, W/(2π) = 0.28 MHz, Ωc/(2π) = 20 MHz,
V̄1/(2π) = −26.4 MHz and V̄2/(2π) = −0.37 MHz, corresponding to the interatomic distances
d = 18 µm and δ = 2.5 µm. The detunings ∆p and ∆c are set to zero. The Rabi frequencies are
Ωp/(2π) = 1.2 MHz (red solid curve), Ωp/(2π) = 6 MHz (blue dashed curve) and Ωp/(2π) = 20 MHz
(green dashed-dotted curve). As evident from the time evolution of σ(ρ1, ρ2), the three sets correspond
to completely Markovian system dynamics according to Eq. (2.85), even though the population
dynamics in the system shows very different equilibration timescales as well as steady-state values.
Note that Nρ1,ρ2 has been calculated using data up to t = 100 µs.

The different strengths of dephasing can be understood on grounds of the strong difference
in the interactions V̄1 � V̄2. In this way, the environment can distinguish whether the system
is in state |π1〉 or |π2〉 and acts as a measurement device, causing dephasing and decoherence in
the system. The underlying reasoning can be summarized as follows (cf. Sec. 2.3.2): Consider
the case when the laser fields are applied resonantly, ∆p = ∆c = 0. The background atom is
then tuned to conditions of EIT, in which it evolves into a so-called dark state, which has no
contribution from state |e〉 (cf. Sec. 2.2.4). If the dimer is in the state |π2〉, the background
atom remains in the dark state since the interaction V̄2 is negligible by design of the setup.
However, if the dimer is in the state |π1〉, the strong interaction V̄1 shifts the Rydberg level |r〉
of the background atom out of resonance, disturbing EIT and yielding a non-zero population
of the state |e〉. This state then decays with rate Γp, and the emitted photons provide a
potential observer with information about the state of the dimer. The stronger the driving
Ωp, the more photons will be scattered by the background atom, allowing one to infer the
state of the dimer more quickly, and thereby dephasing the dimer dynamics more quickly.

As depicted in Fig. 2.23(b), however, various dimer dynamics with vastly different dephasing
timescales and steady-state values can still be purely Markovian according to Eq. (2.85). That
is, since σ(ρ1, ρ2) is always negative for the parameters of Fig. 2.23(a), the integrated quantity
Nρ1,ρ2 is zero, which indicates purely Markovian dimer dynamics. Accordingly, it can be
misleading to estimate the Markovianity of the dynamics via properties of the population
dynamics such as stead-state values or dephasing timescales.

We now demonstrate the control of the degree of non-Markovianity via the laser parameters
in our setup. In Fig. 2.24 we show an example of a specific geometrical arrangement for which
the dimer dynamics can be switched from Markovian to non-Markovian (cf. Ref. [266]) by
modifying the laser parameters of both probe and coupling laser. While small, asymmetric
driving Ωp < Ωc and small laser detunings result in Markovian dimer dynamics with regular
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Figure 2.24: Dimer dynamics tuned from Markovian to non-Markovian via change of laser parameters.
(a) Population p1 of state |π1〉. The damped oscillations correspond to Markovian dynamics, as can be
seen from the time evolution of σ(ρ1, ρ2) shown in panel (b). Laser parameters are Ωp/(2π) = 0.5 MHz,
∆p/(2π) = 5.4 MHz, Ωc/(2π) = 25.2 MHz, and ∆c/(2π) = 5.4 MHz. (c) Same as (a), but for a
different set of laser parameters, Ωp/(2π) = 27.6 MHz, ∆p/(2π) = −69.9 MHz, Ωc/(2π) = 20.4 MHz,
and ∆c/(2π) = 69.5 MHz. The population dynamics of state |π1〉 exhibits alternating oscillations
of different amplitude, suggesting non-Markovian dynamics. This is is verified in (d) where we find
Nρ1,ρ2 ≈ 6.4. For both cases, W/(2π) = 3.2 MHz, V̄1/(2π) = −64.5 MHz, and V̄2/(2π) = −1.6 MHz,
corresponding to the interatomic distances d = 8 µm and δ = 2 µm. Note that Nρ1,ρ2 has been
calculated using data up to t = 100 µs.

damped oscillations, we find non-Markovian dimer dynamics with oscillations of alternating
amplitude for large Rabi frequencies Ωp ∼ Ωc and large laser detunings obeying ∆p + ∆c ∼ 0.
Note that although σ(ρ1, ρ2) is only shown up to t = 3 µs, the data underlying Nρ1,ρ2

extends to longer times (t = 100 µs), guaranteeing that Nρ1,ρ2 has converged. In experiment,
dimer dynamics cannot be studied for arbitrarily long times due to the finite dimer lifetime
(τagg ≈ 56 µs, cf. Fig. 2.11(b)).

The difference in the population oscillations in panel (a) of Figure 2.24 compared to panel
(c) suggests that non-Markovian dynamics manifests itself in temporal structures of the
population dynamics, such as revivals. This is not always the case. We stress that visible non-
Markovian features in the population dynamics are not necessarily present even if the system
dynamics is non-Markovian. Indeed, in Fig. 2.25 we show two examples of non-Markovian
system dynamics with clearly positive contributions σ(ρ1, ρ2) > 0 but distinct dynamics. The
population dynamics of |π1〉 displayed in panel (a) with Nρ1,ρ2 ≈ 3.3 as shown in panel (b) does
not exhibit noticeable revivals or other features often associated with non-Markovian dynamics.
Panel (c), in contrast, shows oscillations of irregular amplitude of the population of state |π1〉
and large-amplitude oscillations in σ(ρ1, ρ2), yielding Nρ1,ρ2 ≈ 7.8. It should be noted that
this cannot be explained by the larger value of the quantity Nρ1,ρ2 in (a) as compared to (c).
Even dynamics with smaller values of Nρ1,ρ2 than 3.3 can display non-Markovian features [65].
Hence, the population dynamics does not represent a good indicator for non-Markovianity.

What is more, the features found in the oscillations of p1 shown in panels (c) of Figs. 2.24
and 2.25 cannot be explained by the use of a single background atom in the simulations, but
have to be attributed to the specific dynamics within the environment. We have verified
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Figure 2.25: Aggregate dynamics for two different degrees of non-Markovianity. Panel (a) shows
non-Markovian aggregate dynamics with Nρ1,ρ2 ≈ 3.3, for which the population dynamics of state
|π1〉 does not exhibit noticeable irregularities. The time evolution of σ(ρ1, ρ2) is displayed in panel
(b). Both (a) and (b) have been obtained using the parameters Ωp/(2π) = 29.7 MHz, ∆p/(2π) =
−53.2 MHz, Ωc/(2π) = 27.2 MHz, ∆c/(2π) = 56 MHz, W/(2π) = 2.4 MHz, V̄1/(2π) = −44.1 MHz,
and V̄2/(2π) = −0.9 MHz, corresponding to the interatomic distances d = 8.8 µm and δ = 2.2 µm.
Panel (c) shows non-Markovian aggregate dynamics with Nρ1,ρ2 ≈ 7.8, also reflected in the irregular
population oscillations of state |π1〉. The corresponding time evolution of σ(ρ1, ρ2) is depicted in panel
(d). The parameters used here are Ωp/(2π) = 29 MHz, ∆p/(2π) = 77.5 MHz, Ωc/(2π) = 24 MHz,
∆c/(2π) = −80 MHz, W/(2π) = 4.7 MHz, V̄1/(2π) = −64.5 MHz, and V̄2/(2π) = −1.7 MHz,
corresponding to the interatomic distances d = 7 µm and δ = 2 µm.

this by introducing a second background atom with separation δ (d) from the second dimer
atom (first background atom), which yields a population dynamics of the aggregate states
that also exhibits “irregular” features. Effects pertaining to the asymmetric setup (two
aggregate atoms, one background atom) are thus not responsible for non-Markovian dynamics
or even steady-state values with unequal population p1 6= p2. The control over the degree of
Markovianity of the system dynamics is enabled by the possibility to influence the timescale
of the background dynamics via the laser parameters.

The results discussed above show that by modifying the interatomic distances as well as the
laser parameters, we can switch the dimer dynamics from Markovian to non-Markovian and
can tune the degree non-Markovianity. This allows one to study Markovian and non-Markovian
dynamics in a controlled fashion. We have found that the following ingredients are required
to observe non-Markovianity in the system dynamics:

(i) “Long” intrinsic timescale of the background dynamics, in particular of the Rydberg
population, to provide environment memory. A long intrinsic timescale can be achieved
by, e.g., reducing the radiative decay rate Γp (which is, however, experimentally im-
practical) or by introducing a large detuning ∆p of the intermediate state while at the
same time keeping the two-photon resonance condition ∆p + ∆c ∼ 0. The timescale to
which the intrinsic timescale (or equilibration timescale) compares to is the dipole-dipole
interaction strength W .

(ii) Comparability of timescales of aggregate and background atom dynamics. Comparable
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timescales between aggregate and background atom dynamics are important since
coupling between two systems with significantly different time (or energy) scales is
inhibited. A similar timescale of the dynamics can be most easily attained by tuning
the aggregate coupling W , as the background atom timescale results from a complex
interplay of laser parameters, radiative decay and interactions.

(iii) Correlation between aggregate dynamics and photon emission from the background
atom, i.e., ability to deduce the state of the aggregate by measuring the photons emitted
by the background atom. Though this condition is not fully separable from the previous
one (ii), it can be met by ensuring a strong interaction V̄1 between the aggregate in state
|π1〉 and the background atom, and a strong difference V̄1 � V̄2 between the interactions
V̄1 and V̄2 of the two aggregate states with the background atom.

In the above list, the first condition (i) guarantees the presence of environment memory,
and conditions (ii) and (iii) guarantee the visibility of the environment dynamics in the
system dynamics. This can be seen in Fig. 2.25: To reduce the degree of non-Markovianity in
Fig. 2.25(a) as compared to Fig. 2.25(c), we reduced the detuning |∆p|, the interaction V̄1, and
the aggregate coupling W . Reducing the detuning |∆p| decreases the equilibration time of the
background dynamics, decreasing the interaction V̄1 reduces the correlation between aggregate
and background atom, and reducing the aggregate coupling W decreases the visibility of the
back-action induced by the background dynamics. In Fig. 2.24, where we keep the aggregate
coupling W as well as the interactions V̄1,2 fixed, non-Markovian dynamics is introduced via
intermediate state detuning ∆p and increased Rabi frequencies of both probe and coupling
laser. This illustrates that the three conditions (i)-(iii) listed above are intertwined since all
conditions depend on the laser parameters, which strongly influence the background atom
dynamics. Still, condition (iii) is reflected in the difficulty to find parameters for Markovian
dynamics for larger Rabi frequencies Ωp, and correspondingly larger dephasing rates of the
aggregate.13

The seeming contradiction between conditions (i) and (ii) is due to the difficulty to classify
the large parameter space in which non-Markovian dynamics can be achieved. Clearly, for
slow aggregate dynamics, the timescale on which the intrinsic dynamics of the background
atom proceeds can be much longer than for fast aggregate dynamics. In fact, if the aggregate
spacing d in Fig. 2.23 is reduced to 5 µm, non-Markovian dynamics arises also in this
case. If the timescale of the aggregate dynamics is reduced further, however, the degree of
non-Markovianity decreases again since the timescales of aggregate and background atom
become incompatible [condition (ii)]. This is illustrated in Fig. 2.26, which shows Nρ1,ρ2

as a function of the aggregate spacing d [panel (a)], as well as the corresponding resonant
dipole-dipole interaction strength W [panel (b)]. One finds that there exists an aggregate
spacing (d ≈ 3.7 µm, corresponding to W ≈ 201 MHz) that maximizes the non-Markovian
quantifier (2.85), which supports our reasoning from above. We note that for numerical
reasons, only dynamics until t = 10 µs has been taken into account for the calculation of
Nρ1,ρ2 in Fig. 2.26. More precisely, since the sampling time step has to be adjusted for
each aggregate spacing due to the change in oscillation frequency over orders of magnitudes
during the scan over aggregate spacings, long propagation times are numerically expensive.
In addition, the steady state is reached only after long times (t� 10 µs), which implies that
calculations are significantly slowed down, and numerical errors can accumulate during the
13Numerical optimization using the method detailed in Sec. 2.6.1 with Nρ1,ρ2 being the objective function to

be minimized with respect to the constraints Ωp/(2π) ∈ [1, 30] MHz, Ωc/(2π) ∈ [1, 90] MHz, and ∆p/(2π)
as well as ∆c/(2π) ∈ [−70, 70] MHz did not yield parameter sets with large Rabi frequencies, if a result was
obtained at all.
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Figure 2.26: Non-Markovianity quantifier Nρ1,ρ2 as a function of the aggregate spacing d (a) respec-
tively the corresponding resonant dipole-dipole interaction strength W (b), using the parameters of
Fig. 2.23 with Ωp/(2π) = 6 MHz. For the evaluation of Nρ1,ρ2 , the time evolution of ρ1(t) and ρ2(t)
has been calculated until t = 10 µs.

evolution. By evaluating the same observable Nρ1,ρ2 for a fixed number of oscillations instead
of a fixed final time, we have verified that the shape of Fig. 2.26 is not an artifact of the
propagation time.

In summary, the presented setup provides a test bench to study non-Markovianity in open
quantum systems. We have shown that both Markovian as well as non-Markovian system
dynamics can be achieved by the driven-dissipative environment provided by the background
atom. Control over laser parameters driving the background atom enable manipulation of the
background atom dynamics, thereby also providing control over the degree of Markovianity of
the system dynamics. Besides, our analysis reveals that (non-)Markovianity of the system
(dimer) dynamics cannot be easily inferred from population dynamics alone; a measure relying
on the information provided by the full density matrix of the system has to be employed.
Having shown the variety of Markovian and non-Markovian dynamics as well as dephasing
timescales and steady-state values of the system in the case of a simple setup employing
a single background atom, we expect even richer tunability of the dynamics in the case of
many background atoms. This might open up new prospects for using Rydberg aggregates as
quantum simulators with a controlled environment.

2.6 Engineering aggregate states

In the previous sections we have seen that various dynamical effects such as decoherence
and non-Markovianity can be induced in the aggregate using the control over the atomic
environment, viz., the background atoms. Now we address the question of how the environment
provided by the background atoms can be used to prepare particular aggregate states. For a
quantum simulator designed to solve the dynamics of open quantum systems, this question is of
crucial importance. Firstly, quantum simulation of certain processes require the system to be
initially prepared in a specific state, such as a thermal state or an entangled state. Secondly, in
an open quantum system, the interaction with the environment typically brings the system into
a steady state, which depends on specifics of the environment such as environment temperature,
for example. A quantum simulator, whose task is to reproduce the dynamics generated by the
environment-couplings of the target system, must capture the evolution towards such steady
states. What is more, its is desirable to realize a broad range of environments with specific
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Figure 2.27: Sketch of the setup. (a) Laser-driven environment atoms are placed at a distance δ
from each of the system atoms, which have interatomic separation d. (b) Level sketch. The dimer
states |π1〉 and |π2〉 are coupled to each other via resonant dipole-dipole interaction with strength
W and interact with the Rydberg states |r〉 of the background atoms via the interactions V̄nα. The
background atoms are laser-driven, realizing the level scheme depicted in the green boxes.

properties using the same quantum simulation setup.
Coherent [295, 296] and incoherent approaches [297] have been developed for this reservoir

engineering problem, for particular environments or degrees of freedom in the system. Reservoir
engineering, which involves the design of the environment or its coupling to the system,
guarantees that the dynamics generated by the environment-couplings of the target system is
reproduced in the simulator [8, 298], even though the quantum simulator is a physical system
totally different from the target system.

In this section, we consider reservoir engineering of thermal environments [66], i.e., environ-
ments that induce thermal populations of aggregate eigenstates. Specifically, using optical
control, we transform a typically non-thermal environment into a thermal environment with
controllable temperature. Access to an arbitrary-temperature thermal environment provides
two-fold benefits. Firstly, a system with a fixed-temperature environment can simulate more
general non-equilibrium dynamics. In our case, the temperature of the Rydberg aggregate
can be significantly higher than the ambient, ultralow temperature. Secondly, thermal state
preparation allows the study of interacting systems initially at equilibrium, which has moti-
vated the design of digital algorithms [299–302]. In addition to thermal states, we also give
examples for the preparation of the Rydberg aggregate in a single (entangled) eigenstate.
This provides a convenient means to prepare the initial state required, e.g., for entanglement
transport in a flexible Rydberg chain [303].
The state preparation technique we employ harnesses the driven-dissipative environment

constituted by the background atoms and visualized before in Fig. 2.21. Due to the dissipation,
system and environment evolve towards a unique steady state [188], which is independent of
the initial condition. Accordingly, information on the initial state is lost during the dissipative
preparation. This is an unwanted effect in quantum computing, where the final state after a
gate operation is intimately linked to the initial state, but a wanted one in state preparation,
where one wants to obtain the desired final state irrespective of the initial state. Using this
dissipative approach, we prepare system eigenstates and thermal states (i) on a timescale
shorter than the system decay timescale and (ii) in a long time limit. While (i) demonstrates
dissipative state preparation of entangled and thermal states, (ii) can be used to mimic a
thermal environment for a quantum simulator. We highlight that the effective temperature
scale of the Boltzmann distribution of eigenstates is determined by the system interaction
strength rather than the ‘ambient’ temperature of the ultracold environment.



68 Chapter 2 Shaping environments for Rydberg aggregates

We now exemplify the relevant properties of our setup for a Rydberg dimer, i.e., two
Rydberg atoms with interatomic separation d as shown in Fig. 2.27(a). The environment for
the Rydberg system is provided by laser-driven atoms. For simplicity, we place each at a
distance δ from a given system-atom, such that the vectors along d and δ respectively enclose
a right angle. For the larger system sizes discussed later, this arrangement is straightforwardly
extended, keeping the interatomic separation between adjacent system atoms (system and
environment atoms) at d (δ). The environment atoms are addressed by two laser beams.
The first laser, with Rabi frequency Ωp and detuning ∆p, couples the ground state |g〉 of an
environment atom to a short-lived intermediate state |e〉 with radiative decay rate Γp. The
second laser, with Rabi frequency Ωc and detuning ∆c, couples the intermediate state |e〉 to a
Rydberg state |r〉 6= |p〉 , |s〉. Again we ignore the decay of the Rydberg state |r〉, which has a
much longer lifetime than the state |e〉 (cf. Sec. 2.2.5). For simplicity, we also do not include
the finite lifetime of the system in our calculations; this is approximately 56 µs for the dimer
states we consider [72]. Effects of these decay channels are discussed in Sec. 2.6.3.
The resulting level diagram including the interactions between Rydberg dimer and back-

ground atoms is depicted in Fig. 2.27(b). The dimer states |π1(2)〉 (corresponding to the
configurations with the |p〉 excitation localized at site 1(2)) are coupled via resonant dipole-
dipole interaction W . In the dimer case, this leads to the eigenvalues E± = ±W of the dimer
Hamiltonian, and the corresponding eigenstates are the Bell states |Ψ±〉 = (|π1〉 ± |π2〉)/

√
2.

The effective interactions of the dimer states with the background atoms are denoted by
V̄nα = V

(pr)
nα +

∑
m 6=n V

(sr)
mα . Due to their distance-dependence, the interactions V (pr)

nα and
V

(sr)
nα are strongest for α = n, i.e. adjacent environment and system atoms. Since furthermore
|V (pr)
nn | � |V (sr)

nn |, the interactions V̄nn are much stronger than the interactions V̄n 6=m, as
indicated by the thickness of the arrows in Fig. 2.27(b). Lastly, the van der Waals interaction
between the environment atoms is given by V (rr). Note that the findings of this section do
not rely on the specific Rydberg states chosen, but on the state-dependence of interactions
between Rydberg aggregate and background atoms.

Control over the environment dynamics is achieved by tuning the laser parameters addressing
the environment atoms. The numerical optimization procedure by which we obtain an
appropriate set of laser parameters, as well as measures which allow one to quantify the
quality of the numerical optimization result are discussed in Sec. 2.6.1. Section 2.6.2 shows
that the Rydberg dimer can be dissipatively prepared in the Bell eigenstates |Ψ±〉 of the
system Hamiltonian, and briefly discusses the responsible mechanism. In Sec. 2.6.3, we extend
the dissipative preparation to thermal states and give a detailed account of the robustness of
our preparation scheme with respect to laser parameter variations, distance variations, and
aggregate size.

2.6.1 Numerical optimization and distance measures

To obtain a suitable set of laser parameters (Ωp,∆p,Ωc,∆c) for dissipative preparation of
aggregate states we employ numerical optimization using a fixed, experimentally accessible [98,
213] environment-atom geometry with d = 5 µm and δ = 2 µm. The aggregate spacing of
d = 5 µm implies a clear separation of aggregate eigenstates in energy, 2W/(2π) = 26 MHz,
which allows one to energetically resolve either aggregate eigenstate on a short (microsecond)
timescale. Moreover, for the chosen aggregate-environment distance δ = 2 µm, the aggregate-
environment interactions are strongly state-dependent, |V (pr)

nn |/|V (sr)
nn | ∼ 50 with |V (sr)

nn | being
smaller than the power-broadening resulting from typical coupling Rabi frequencies Ωc, which
gives rise to distinct aggregate-state-dependent dynamics in the adjacent environment atom.
In terms of the critical EIT radius, an environment atom in EIT configuration placed at a
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distance δ = 2 µm from an aggregate atom lies within the region that allows one to distinguish
between |p〉 and |s〉 state for a large range of Rabi frequencies Ωc. Our choice of distances
allows therefore for grand tunability of the aggregate dynamics via the laser parameters
addressing the environment atoms. Note that the optimized laser parameters are independent
of the initial state of system or environment. We thus use an initial system (environment)
state that is easy to access experimentally in our numerical simulations, given by |π1〉 (|gg〉).

To perform the numerical optimization, we use the bound-constrained “Controlled Random
Search (CRS) with local mutation (GN_CRS2_LM)”-alorithm provided by the nlopt package in
python; the numerical simulations are done with QuTiP [304]. This algorithm has been chosen
owing to its good performance, even compared to local optimization algorithms with random
initial parameter guesses. In fact, bound-constrained local optimization (Nelder-Mead or
COBYLA) starting from the optimization result obtained via GN_CRS2_LM yielded an improved
result only in a few cases.
The optimization algorithm GN_CRS2_LM iteratively tries to find the global parameter

optimum (depending on the specification, either maximum or minimum) with respect to the
objective function. It requires an objective function (or cost function) that depends on the laser
parameters (Ωp,∆p,Ωc,∆c), an initial guess for the optimal parameter set, and parameter
constraints. We choose the parameter constraints as follows: Ωp/(2π) ∈ [0.1, 35] MHz,
Ωc/(2π) ∈ [0.1, 100] MHz, and ∆p/(2π) as well as ∆c/(2π) ∈ [−100, 100] MHz. These
constraints restrict our parameters to currently-achievable experimental parameters [93, 218];
the detunings are small enough to guarantee that no resonance other than the intended
transition is hit.
Although we use a global optimization algorithm, we found that the optimization results

do depend on the initial parameter choices, since specified tolerances determine the stopping
criteria of the algorithm. In our simulation, we use a relative stopping criterion, i.e., the
algorithm stops in case of a relative change of less than 10−3 in either the objective function
or the parameter values in two subsequent iterations of the algorithm. To obtain a good
optimization result, numerical optimization starting from different (randomly determined)
initial parameter guesses can thus be advisable. For optimization problems which seemed to
have difficulties finding a global optimum, we looped over different random initial conditions
and used the optimization result only if it met a criterion specified beforehand in terms of an
objective function value.

To assess the difference between the target density matrix and the density matrix obtained
after numerical propagation, we employ two often-adopted distance measures (cf. Refs. [305,
306]). The first measure is the fidelity F (ρ1, ρ2). The fidelity between two density matrices ρ1
and ρ2 is defined as [305]

F (ρ1, ρ2) = Tr
{√√

ρ1ρ2
√
ρ1

}
, (2.86)

and can be interpreted a generalized measure of the overlap between two quantum states [306].
The second measure is related to the trace distance via

FD(ρ1, ρ2) = 1−D(ρ1, ρ2). (2.87)

The trace distance D(ρ1, ρ2), which can be interpreted as a measure of state distinguisha-
bility [273], has been defined previously in Eq. (2.83). From the relation 1 − F (ρ1, ρ2) ≤
D(ρ1, ρ2) [305] it follows that FD(ρ1, ρ2) ≤ F (ρ1, ρ2), which implies that FD(ρ1, ρ2) is a more
conservative measure.
To illustrate the different timescales on which steady-state preparation is feasible, we

evaluate the two distance measures F and FD at t = 1 µs and t→∞ respectively, denoting
the t→∞ case by F̃ and F̃D. Note that a summary of all values (F, FD, F̃ , F̃D) for the state
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Figure 2.28: Bell state preparation in a Rydberg dimer. (a,b) Population dynamics of anti-symmetric
(a) and symmetric (b) Bell state. Red (blue) lines indicate the population of the anti-symmetric
(symmetric) Bell state and green (purple) lines indicate the populations of the states |π1〉 (|π2〉). Laser
parameters are listed in Tab. 2.6. (c,d) Coherent evolution (neglecting dissipation) with parameters as
in panel (a). Note the different timescale from the upper plots. In (c), the green (red/blue) line denotes
the population dynamics of Pr(−/+) after initial preparation in state |Ψ+〉 |gg〉 (cf. main text). (d) The
red (blue) line denotes P−(+) as in (c), but additionally projected on the state |e〉 of the environment.

preparations shown in this chapter together with the corresponding laser parameters and
states is given in Tab. 2.6 below. To obtain these exemplary parameter values we used F
(FD) as an objective function in our simulations for aggregate sizes with N < 3 (N ≥ 3).

2.6.2 Bell-state preparation

We start our discussion of numerical results with the preparation of a single aggregate
eigenstate, which is a Bell state in case of a Rydberg dimer. In Fig. 2.28 we illustrate the
preparation of the anti-symmetric |Ψ−〉 [panel (a)] as well as the symmetric

∣∣Ψ+〉 Bell state
[panel (b)]. The marked revival feature in the population dynamics [green and purple lines in
panels (a) and (b)] is absent in the dynamics of the eigenstate populations [red and blue lines
in panels (a) and (b)], indicating that the eigenstates can indeed be selectively addressed by
the dissipative environment. Using the laser parameters listed in Tab. 2.6, the preparation of
the anti-symmetric (symmetric) Bell state is performed with fidelity F = 0.999 (F = 0.999)
respectively FD = 0.992 (FD = 0.997) after 1 µs. In the steady state, F stays constant while
FD improves for both states to F̃D = 0.998 (cf. Tab. 2.6). Hence, high-fidelity preparation
of single aggregate eigenstates is possible on a timescale short compared to the aggregate
lifetime of t = 56 µs.
To gain insight into the dissipative state preparation mechanism, we now examine the

underlying coherent evolution for the system and atomic environment. In particular, we
consider the preparation of the |Ψ−〉 state as in Fig. 2.28(a); the same mechanism (with∣∣Ψ+〉↔ |Ψ−〉) describes preparation of the

∣∣Ψ+〉 state. We accordingly focus on the dynamics
of the Bell eigenstates of the system, which are separable from environment states containing
no Rydberg excitations. That is, since the Rydberg-Rydberg interactions between system
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and environment (i.e., background atoms) are state-dependent, correlations exist between
environment and system in the presence of environment Rydberg-excitations, whereas in their
absence no correlations exist.

In Fig. 2.28(c) we plot the coherent population dynamics (with no dissipative decay from |e〉)
of both system eigenstates |Ψ±〉 and environment Rydberg state |r〉 after initial preparation in
state |Ψ+〉 |gg〉; i.e., the system (environment) is initially in the symmetric Bell state (ground
state). The population in a particular Bell state is evaluated by taking the expectation value of
the projection operators P+(−) on the coupled system-environment dynamics in the subspace
of the aggregate (and unity in the environment subspace), given by

P+(−) = |Ψ+(−)〉〈Ψ+(−)| . (2.88)

The environment atom Rydberg population we evaluate using the projection operator in the
environment subspace (and unity in the aggregate subspace),

Pr = I ⊗ |r〉〈r|+ |r〉〈r| ⊗ I. (2.89)

As can be seen in Fig. 2.28(c), the
∣∣Ψ+〉 and |Ψ−〉 system states are coherently coupled.

Since the system eigenstates are decoupled in the absence of the environment atoms, this
coupling proceeds via the environment. In fact, the |Ψ−〉 state becomes accessible through
Rydberg-Rydberg interactions between system and environment atoms, as illustrated by the
correlation between the dynamics of the anti-symmetric Bell state (red line) and the Rydberg
population (green line) in Fig. 2.28(c). When we subsequently project the populations of
the Bell eigenstates on the environment state |e〉, shown in Fig. 2.28(d), we observe a strong
correlation between occupation of |e〉 and the target |Ψ−〉 system-state. This implies that
when decay from |e〉 is introduced, population is dissipatively pumped into the |Ψ−〉 |gg〉
state, which is effectively dark to both driving and dissipation. Thus, the state-selective
Rydberg-Rydberg interaction between system and environment allows us to couple only a
single system eigenstate to the dissipative channel of our environment, thereby engineering a
particular system steady state.

2.6.3 Thermal-state preparation
In addition to the preparation of a single system eigenstate, we can also prepare mixtures of
eigenstates. To illustrate this, we consider thermal states [307]

ρth
T = 1

Z

∑
n

e−Hagg/(kT ) |ϕn〉〈ϕn|, (2.90)

where Z = Tr{e−Hagg/(kT ) |ϕn〉〈ϕn|}, |ϕn〉 denotes the eigenstates of Hagg, k the Boltzmann
constant and T the temperature of the system. The target populations indicated with black
dashed lines in the subsequent figures are calculated according to this formula. Note that
the relevant energy scale providing the temperature scale here is the resonant dipole-dipole
interaction W . For a dimer, the two system eigenstates are separated in energy by 2W ,
such that ρth

T ∝ (|ϕ1〉〈ϕ1| + e−2W/(kT ) |ϕ2〉〈ϕ2|). We emphasize that T is not the ambient
temperature of the environment atoms, which is typically ∼ µK.

To illustrate the versatility of the scheme we demonstrate low and high temperature mixtures,
given by kTL = 1.2 W and kTH = 12.3 W respectively. The numerical values are chosen
such that TL yields strong asymmetries in the eigenstate populations while TH yields similar
occupations of the eigenstates.
For a Rydberg dimer, the preparation of thermal states with temperature TL (a) and TH

(b) is shown in Fig. 2.29, using exemplary laser parameter sets (see Tab. 2.6). Both states can
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Figure 2.29: Population dynamics of thermal state preparation in a Rydberg dimer with tempera-
tures TL (a) and TH (b). Solid red (blue) lines denote the population of the lower (higher) energy
eigenstate

∣∣Ψ−(+)〉 while green (purple) lines indicate localized state |π1〉 (|π2〉) populations. The
target populations are shown with black dashed lines. Laser parameters are listed in Tab. 2.6. Note
the different scaling of the time axes.

be prepared with high fidelity (FD ≥ 0.997 after 1 µs, with no further improvement in the
steady state). In contrast to the Bell state preparation illustrated in Fig. 2.28, the oscillatory
features in the aggregate population in Fig. 2.29 (green and purple lines) are reflected in the
eigenstate dynamics (red and blue lines). This indicates that the mechanism responsible for
the state preparation can no longer be understood as a single aggregate eigenstate coupled to
a dissipative channel.
The thermal state is sustained through competition between the dissipative decay and

coherent dynamics. This is in contrast to Bell state preparation, which involves laser parameters
such that the target system eigenstate (and ground environment state) is minimally affected
by either coherent or incoherent dynamics. This complicates a clear understanding of the
preparation mechanism such as outlined above. Considering the large landscape of possible
laser parameter values which yield high preparation fidelity (see discussion below), we cannot
give a simple explanation of the state-preparation mechanism that covers all possible parameter
combinations in this case.

As a side note, the dimer-state preparations discussed so far involve non-Markovian system
evolution according to Eq. (2.85). The degree of non-Markovianity does not correlate with the
preparation fidelity, nor is there a clear correlation between the degree of non-Markoviantiy
and thermal-state temperature. This is consistent with our conclusion in Sec. 2.5, namely
that non-Markovian dynamics does not necessarily exhibit distinct features.

Robustness of the preparation scheme

We now assess the robustness of the preparation scheme. That is, for the target state to be
experimentally accessible, it is important that small variations in the laser parameters or
distances do not lead to a strong reduction of the fidelity. We thus study the dependence of
the state-preparation quality for thermal-state preparation, quantified by FD, for both laser
parameters and distances in the following.
In Fig. 2.30 we show the dependence of FD for thermal dimer-state preparation with

temperature TL on all possible combinations of laser-parameter tuples involving the laser
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Figure 2.30: Measure FD of the thermal-state preparation quality in a Rydberg dimer with tempera-
ture TL as a function of the various laser parameters Ωp, Ωc, ∆p, and ∆c. Crosses mark the values of
the laser parameters used for the thermal-state preparation shown in Fig. 2.29; the laser parameters
that are not indicated in the axes are set to their respective values listed in Tab. 2.6. The solid black
lines mark the contour defined by FD = 0.99. Note that for the sake of presentation, the unit MHz has
been omitted in the y-axes labels.

parameters Ωp, Ωc, ∆p, and ∆c. The laser parameters are centered around their ‘optimal’
values (corresponding to the values used in Fig. 2.29 and listed in Tab. 2.6), which are
indicated by black crosses. Solid black lines mark the contour defined by FD = 0.99. As
can be seen from the figure, for any parameter tuple there is a direction in parameter space
in which FD does not decrease significantly. The range of possible parameter variations for
which FD ≥ 0.99 depends on the parameters which are varied. This implies that (i) the laser
parameter values required to obtain high target-state fidelities are non-unique, (ii) thermal
state-preparation is robust with respect to small (. 0.5× 2π MHz) fluctuations in the laser
parameters and (iii) even large fluctuations of laser parameters in parameter space can still
yield high-fidelity thermal-state preparation, if the fluctuations are along certain directions in
parameter space. We note that the FD-landscape depends on the desired target state, which
is the thermal state with temperature TL for the scenarios shown in Fig. 2.30.

The points (i–iii) become clearer when considering Fig. 2.31, which shows FD for a thermal-
state preparation of a Rydberg dimer with temperature TH (left panel: FD evaluated after
t = 1 µs, right panel: steady-state value F̃D) as a function of the laser detunings ∆p and
∆c, while keeping the Rabi frequencies fixed at their respective ‘optimal’ value listed in
Tab. 2.6. The laser detuning values span the whole range in which numerical optimization is
performed. The region enclosed by the solid black lines in the left (right) panel corresponds
to thermal-state preparation with FD > 0.99 (F̃D > 0.99). Several, not connected islands
exist in parameter space for which high-fidelity thermal-state preparation is possible. These
islands extend for larger times, reflecting the general observation that steady-state preparation
fidelities are typically more robust with respect to parameter variations than the fidelities
obtained at t = 1 µs. Since the optimal regions are extended along some direction in parameter
space, joint variations of laser parameters are possible without significant loss of preparation
fidelity.
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Figure 2.31: Thermal-state preparation in a Rydberg dimer with temperature TH as a function of
the laser detunings ∆p and ∆c. The left panel shows FD evaluated after t = 1 µs while the right one
the respective steady-state value F̃D. Crosses mark the values used in the thermal-state preparation
shown in Fig. 2.29. The solid black lines mark the contour defined by FD = 0.99. The values of the
Rabi frequencies used in the simulation are listed in Tab. 2.6.

Besides, Fig. 2.31 illustrates the challenges a numerical optimization procedure faces when
trying to find the optimum of the objective function: several — interconnected or disconnected
— islands of high preparation fidelity can exist in parameter space. Accordingly, optimization
results may not always correspond to the global optimum, as noted before. In fact, the maximal
value of FD in Fig. 2.31(a), FD > 0.999, is larger than the value FD = 0.997 at the position of
cross (cf. Tab. 2.6), and is obtained for ∆p/(2π) = −6.6 MHz and ∆c/(2π) = −67.8 MHz.
For this reason we refer to the parameter sets listed in Tab. 2.6 as “exemplary” parameter
sets; larger preparation fidelities may be achieved with “better” parameter sets.
We stress that the high-fidelity landscape crucially depends on the target state. Together

with an assessment of the robustness with respect to distance variations, this is illustrated
in Fig. 2.32. Here, panels (a) and (b) show FD as a function of the dimer separation d
and the dimer-environment atom distance δ for the temperatures TL and TH , respectively;
laser parameters are set to the values given in Tab. 2.6. Contour lines corresponding to
FD = 0.99 (FD = 0.95) are displayed using black solid (dashed) lines. The crosses mark the
distances d = 5 µm and δ = 2 µm used for the numerical optimization in this section, and
the gray boxes indicate a ±5% uncertainty in the distances, which is a realistic experimental
uncertainty [52]. It can be seen that the landscape of high FD differs strongly between
thermal state preparation with high (TH) respectively low (TL) temperature; in particular
the preparation-scheme robustness with respect to distance variations is different. For high-
temperature (TH) preparation, only one island of high fidelity exists; for low-temperature
(TL) thermal-state preparation, we find three islands. The value of largest FD, FD > 0.999, is
located at d = 4.7 µm and δ = 1.85 µm in (a) and d = 4.95 µm and δ = 2 µm in (b). This
demonstrates (i) that state-preparation fidelity can be improved by optimizing the interatomic
distances, and (ii) small changes in atomic distances can lead to decreased preparation fidelity
for particular laser parameter sets. Still, small variations in the distances do not lead to a
large (� 0.05) drop in the preparation quality FD in both cases.

Panels (c) and (d) of Fig. 2.32 show the dependence of FD on the individual distances δ1(2)
between aggregate atom 1 (2) and environment atom 1 (2), again for the temperatures TL
and TH , respectively. Since due to the symmetry of the setup, FD is symmetric with respect
to exchange δ1 ↔ δ2, the plots are mirror-symmetric around the diagonal, which is indicated
by a gray, dash-dotted line. The island with high-fidelity preparation is again extended,
showing that small fluctuations in the distances still allow for high-fidelity preparation after
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Figure 2.32: Measure FD of the thermal-state preparation in a Rydberg dimer with temperature
TL (a,c) respectively TH (b,d). Panels (a) and (b) show FD as a function of the dimer separation
d and the dimer-environment atom distance δ. Panels (c) and (d) display FD as a function of the
two dimer-environment atom distances δ1 and δ2; the dash-dotted line indicates the symmetry axis
of the plot, which corresponds to a symmetric configuration δ1 = δ2. Crosses mark the values of
the thermal-state preparation shown in Fig. 2.29. The solid (dashed) black lines mark the contours
defined by FD = 0.99 (FD = 0.95). The gray boxes indicate a ±5% uncertainty in the distances. Laser
parameters are listed in Tab. 2.6.

a preparation time of t = 1 µs. The increased number of high-fidelity (FD > 0.99) islands
for the low-temperature (TL) parameter set already found in (a) carries over to the fidelity
variation with respect to the individual system-environment distances δ1,2; likewise, there is
only a single high-fidelity island in (d), as is in (b).

In principle, one could harness the different fidelity landscapes to meet the needs of an actual
experiment. That is, one could think of implementing an adjusted objective function, in which
constraints shaped by the primary experimental error sources are included. Laser parameters
(or interatomic distances) which distinguish themselves by an exceptional robustness as to the
dominating experimental errors could thereby be favored, and an experimental realization of
state-preparation can be made more reliable.

Note that the inclusion of spontaneous emission from the Rydberg state |r〉 (rate Γr/(2π) ≈
3 kHz with corresponding Lindblad operator L =

√
Γr |e〉〈r| for |r〉 = |38s1/2〉 [72]) does not

cause a drop in the target-state fidelities of thermal-state preparation in a Rydberg dimer.
This supports our expectation of high-fidelity thermal-state preparation being feasible under
realistic experimental conditions.

Results for larger system sizes

Dissipative state-preparation is not limited to a Rydberg dimer. In Fig. 2.33 we demonstrate
the preparation of thermal states with temperatures TL (a) and TH (b) for a Rydberg trimer
(N = 3 system atoms, I) as well as a quadromer (N = 4 system atoms, II) using exemplary
laser parameter sets. In both cases, the thermal states can be prepared with good fidelity
(FD ≥ 0.99 in the steady state, cf. Tab. 2.6). Note, however, that these values might not
correspond to the global maximum, since for larger system sizes it becomes numerically more
challenging to explore the whole parameter space. Optimization results are clearly initial-state
dependent, reflecting a ragged optimization landscape, and the location of the global optimum
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Figure 2.33: Thermal state preparation in a trimer (I) and quadromer (II) with temperatures TL
(a) and TH (b). Solid colored lines show the populations pϕk

of the system eigenstates |ϕk〉, and the
target populations are indicated with dashed black lines. Laser parameters are listed in Tab. 2.6. Note
the different axes scales between the panels.

is not easily assessable. The result is nonetheless remarkable: An environment consisting
of only a few atoms can induce non-trivial thermal states with tunable temperature in a
quadromer.

State preparation at short timescales becomes more difficult for larger system sizes, which
can be seen, e.g., by the low value FD = 0.931 for thermal-state preparation of a quadromer
with temperature TL, which rises to FD = 0.990 in the steady state. In particular, for
constant atom spacing, the energy differences between the system eigenenergies decrease
with increasing system size. Larger timescales are thus required for distinctive dynamics
for individual eigenstates to emerge. Accordingly, state preparation on a timescale of a few
microseconds might be challenging to achieve in larger aggregates if the interatomic separation
d between adjacent aggregate atoms is kept constant.
We note that scalability of the Rydberg system to larger sizes is limited by the radiative

lifetimes of the Rydberg |p〉 and |s〉 states. This is illustrated in Fig. 2.34, which shows as before
the thermal-state preparation in a Rydberg trimer (I) and quadromer (II) with temperatures
TL (a) and TH (b), respectively, including additionally decay from the Rydberg aggregate
states |πn〉 with rate 1/τagg [cf. Eq. (2.55)]. The resulting fidelities are listed in Tab. 2.7. Only
the values obtained after t = 1 µs are shown since the aggregate is decayed in the steady
state, and thus F̃ = F̃D = 0. Taking the decay from the aggregate states into account, the
state-preparation fidelity drops below FD = 0.91 for a quadromer with temperature TL, using
the laser parameters of Tab. 2.6. To maintain high-fidelity preparation with large aggregate
sizes, an experimental realization would require conditioning on a non-decayed system. In
this way, fidelity loss due to aggregate decay could be eliminated at the cost of an increased
number of experimental realizations. Additionally, the demands on the experiment could be
diminished by using higher-lying Rydberg states with longer lifetimes. States with interactions
fulfilling e.g. |V (pr)

nn | � |V (sr)
nn | have to be found again in this case.

In summary, we have shown that just a few laser-driven atoms, with global addressing,
already realize a tunable environment enabling tailored dissipative state preparation in a
Rydberg system. In particular, thermal states with temperatures vastly different from the
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Table 2.7: Summary of measures F and FD for the thermal-state preparation displayed in Fig. 2.34.
The measures F and FD are evaluated at t = 1 µs (F, FD).

N Target state F FD

2 ρth
TL

0.991 0.982
2 ρth

TH
0.991 0.982

3 ρth
TL

0.985 0.970
3 ρth

TH
0.985 0.970

4 ρth
TL

0.977 0.909
4 ρth

TH
0.980 0.960
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Figure 2.34: Thermal state preparation in a trime (I) and quadromer (II) with temperatures TL
(a) and TH (b), in the presence of aggregate decay with rate 1/τagg. Solid colored lines show the
populations pϕk

of the system eigenstates |ϕk〉, and the target populations are indicated with dashed
black lines. Laser parameters are listed in Tab. 2.6. Note the different axes scales between the panels.

temperature of the ultracold atomic environment can be prepared with high fidelity, using only
the laser frequencies and intensities driving the environment atoms as control parameters. We
highlight the flexibility provided by an intermediate, controllable environment for engineering
target system-environment interactions; this flexible reservoir engineering is highly desirable
for quantum simulation schemes.



Chapter 3

Tuning displacement in non-Hermitian optomechanical
resonators

Abstract — Optomechanical systems operate at the interface of light
and matter and have intriguing prospects as sensors, transducers, and
quantum memories. Introducing optical gain to optomechanical resonators
was recently shown to give rise to a giant enhancement of the optome-
chanical coupling strength, which is quantified via the mechanical mode
displacement [Jing et al., Phys. Rev. Lett. 113, 053604 (2014)]. It was
suggested that parity-time (PT ) symmetry, which corresponds to balanced
gain and loss of the optical resonators, was an important ingredient to
obtain large enhancement values. By considering the same optically-driven
optomechanical system consisting of two coupled optical resonators, one
of which supports a vibrational mechanical mode, we show that this is
not the case: with off-resonant optical driving, larger enhancement values
can be obtained outside the PT symmetric region. We furthermore assess
the stability properties of the steady-state enhancement values and find
that the previously-found large enhancement values correspond to unstable
steady states, which we ascribe to the unbounded optical gain used in the
modeling. By introducing gain saturation, we show that, depending on the
optical design and driving parameters, a new regime of nonlinear dynamics,
marked by sustained oscillations, emerges.

The work described in this chapter is based on the following publication [308]:

Optomechanical interactions in non-Hermitian photonic molecules
D. W. Schönleber, A. Eisfeld, and R. El-Ganainy
New J. Phys. 18, 045014 (2016)
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3.1 Introduction

Cavity optomechanics, which studies the interaction between light and mechanical systems,
has attracted considerable attention on both theoretical and experimental fronts during the
past decade [58, 309–311]. At the heart of cavity optomechanics lie the radiation-pressure
forces arising from momentum transfer between photon and interacting object. Similarly to
laser cooling of atomic gases [312], radiation pressure forces have been demonstrated to allow
for cooling of micromechanical oscillators [313–315]. This opened up a rapidly developing
field studying optomechanical coupling at the intersection of nanophysics and quantum
optics. Nowadays, optomechanical interactions are being utilized in various applications
such as gravitational wave detectors [314, 316], quantum memories [317], and acceleration
sensors [318], just to mention a few. Furthermore, optical cooling of macroscopic mechanical
oscillators [319] provides a unique opportunity to study the classical-quantum correspondence.

A different notion that has gained a lot of attention recently is parity-time (PT ) symmetry.
There, the interest was aroused by the demonstration that certain PT symmetric Hamiltonians
can posses real eigenspectra [320]. Enabled by the mathematical equivalence between the
Schrödinger equation for a free particle in two spatial dimensions and the paraxial wave
equation in optics, the concept of PT symmetry was then extended to optics [321–324], where
its experimental manifestations were observed in optical systems with engineered gain and
loss profiles [325], as well as other fields (see Ref. [326], for instance). Noteworthy, most of the
striking features of PT symmetric structures also persist for the wider class of non-Hermitian
materials that do not necessarily respect PT symmetry. For example, the existence of the
spectral singularities known as exceptional points, at which at least two eigenvalues of the
Hamiltonian describing the system coalesce, do not require PT symmetry and can occur
in a general non-Hermitian systems [327–329]. The ability to manipulate light in photonic
systems by controlling these singularities has opened the door for new device applications
such as single-mode microring lasers [56, 57] and light sources based on non-Hermitian phase
matching [330].
Recently, the marriage between the two themes of optomechanics and PT symmetry has

been proposed in Ref. [59]. In particular, this work has investigated the optomechanical
coupling in phonon laser (or saser) structures similar to those studied in Ref. [331], but with
the additional ingredient of PT symmetry. Including optical gain to allow for the realization of
PT symmetry was shown to give rise to a giant enhancement of the optomechanical coupling
strength around the exceptional points when compared to a gain-less structure. We will use
the results of Ref. [59] as the starting point of our subsequent investigation.
In the context of a different physical setup, the theme of Chapter 2, namely reservoir

engineering with a nested environment structure, reappears here in the question as to how
one can influence the properties of a certain system (here: the mechanical degree of freedom)
by changing properties of the environment (here: the parameters pertaining to the optical
degrees of freedom). The connection between the atomic system studied in Chap. 2 and
the optomechanical system studied in this chapter becomes apparent when comparing the
conceptual sketch of the atomic system (cf. Fig. 2.21) with the one of the optomechanical
system, displayed in Fig. 3.1: A system of interest is coupled to a small controllable intermediate
system, which in turn is coupled to a further macroscopic environment. In both cases we
are interested in properties of the system as a result of controlled changes in the nested
environment. Whereas in the atomic system the control parameters are the atomic distances,
translating into Rydberg interaction strengths, as well as laser frequencies and intensities, we
have here additionally control over the ratio between gain and loss rates, provided via the
fabrication process.
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Figure 3.1: Conceptual sketch of the optomechanical setup. A “system” mechanical degree of freedom
is optomechanically coupled to a laser-driven “environment”, which consists of two optical resonators
(photonic molecules) that experience photon loss/gain as a result of their material properties. The
loss/gain rates can be controlled through fabrication, and can be interpreted as a coupling to loss/gain-
providing reservoirs (or environments, env.). While optical loss arises from photon leakage out of the
cavity (here depicted by a continuum of electromagnetic modes), optical gain can be provided to the
cavity through doping with optically-pumped Er3+ ions, for example, as depicted here (see Refs. [59,
332] and main text for more details).

The structure of this chapter is as follows: In Sec. 3.2 we introduce the optomechanical
system of interest. To assess the tunability of the mechanical degree of freedom via “envi-
ronment” properties, we perform a comprehensive analytical and numerical investigation of
the optomechanical enhancement of the mechanical displacement in Sec. 3.3. Specifically,
we characterize the nonlinear steady-state solutions and the stability properties in terms of
the optical and acoustic (i.e., mechanical) design parameters as well as the optical pumping
power levels and frequencies. In Sec. 3.4 we study the dynamical evolution of the system and
show that different regimes of operation can be identified based on the design parameters,
excitation power levels and frequency detunings.

Our study reveals several important results: (1) The maximum achievable optomechanical
interaction enhancement for stable steady-state solutions does not occur in the neighborhood of
the PT phase transition point, and (2) Depending on the design parameters, pump properties
and gain saturation effects, different regimes of nonlinear dynamics such as fixed points and
sustained oscillations are possible.

3.2 System and model

We consider a “photonic molecule” that supports two photonic supermodes and one acoustic
mode as shown schematically in Fig. 3.2. Such as system can be realized using whispering-
gallery-mode microtoroid resonators (WGMRs) [59, 311, 315, 333].

WGMRs, which are typically fabricated of silica with radii of several tens of micrometers [331,
333], feature ultra-high quality factors. (The quality factor is proportional to the confinement
time of light in the cavity in units of the optical period [333, 334]). The light is trapped in
WGMRs as a result of total internal reflection, which leads to a localization of the optical
mode along the rim of the circular resonator. Coupling between two WGMRs is facilitated
via the evanescent field outside the cavities, which drops exponentially, resulting in a coupling
that exponentially depends on the separation between the resonators [331, 335]. This coupling
produces a frequency splitting of the normal modes (or supermodes) of the optical cavities.
Due to the similarity between the optical modes in WGMR structures and the electronic states
of diatomic molecules, such WGMR structures are also called “photonic molecules” [336].

In addition to optical modes, WGMRs exhibit a large number of mechanical normal modes
of vibration [58, 311]. Radiation pressure can couple an isolated optical mode to a co-localized
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Figure 3.2: Schematic of the optomechanical system under consideration. Two optical resonators a1
and a2 are coupled to each other via evanescent coupling of strength J . Both optical resonators have a
finite quality factor and experience optical gain or loss due to optical or electrical pumping (not shown
here). The gain/loss profile across the cavities is in general asymmetric as indicated by their different
colors. Resonator a2 supports a vibrational mechanical mode x at frequency ωm. Optical excitation of
the system takes place via the evanescent coupling between resonator a1 and an external waveguide
(thick red line).

mechanical mode since mechanical distortions modify the path length of the optical resonator
and thereby its resonance frequency, which results in optomechanical coupling. Similar to
Refs. [59, 331, 337–341], we here assume that the acoustic mode is localized in one of these
cavities. The acoustic mode is characterized by a resonance frequency ωm, damping coefficient
Γ and an effective mass m, while the optomechanical coupling is characterized by the coupling
constant g. The uncoupled photonic states of the two resonators we take to have identical
resonance frequencies ω0 and quality factors (not necessarily the same) quantified by the
inverse of the radiation loss coefficients α1 and α2, respectively. The optical coupling coefficient
between the two resonators is given by J . Optical excitation of the cavities is achieved through
a waveguide coupled to the cavity a1 with a coupling constant µ.

Additional gain or loss factors γ̃1,2 can be engineered by an appropriate design of the
material system, for instance by doping the resonator with gain/loss material and applying
different optical pumping conditions [59, 332] 1. As a result, the total net gain/loss in each
resonator is described by the coefficients γ1 = γ̃1 − α1 − µ and γ2 = γ̃2 − α2. These values
can be either positive or negative depending on whether the net effect is optical amplification
or decay. In our study, we do not discuss in detail how these gain or loss parameters can be
controlled (see Ref. [59] for more details on that subject) but rather focus on how their values
affect the dynamics.

In the semiclassical limit, i.e., neglecting quantum correlations and fluctuations, the corre-
sponding equations of motion for the (complex) classical optical field amplitudes a1,2 in the
two resonators and the (real) acoustic oscillator displacement x respect the following nonlinear

1By doping the optically active resonator (i.e., the resonator experiencing optical gain) with Er3+ ions which
emit at the resonance frequency ω0 of the cavity, optical pumping with light at a specific, higher frequency
provides optical gain to the cavity.
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Parameter Value

ωm 23.4× 2π MHz
ω0 193× 2π THz

(corresponds to λ0 = 1.55 µm)
g 5.61 GHz/nm
m 5× 10−11 kg
Γ 0.24 MHz
J 6.45 MHz
γ0 6.45 MHz
µ 3.14 MHz

Table 3.1: List of the design parameters that we use throughout this chapter (cf. Refs. [59, 331,
332, 339]) for the numerical calculations.

system of differential equations [58, 59, 332, 339, 342, 343]:

ȧ1 = (−i∆ + γ1)a1 − iJa2 +
√

2µf0, (3.1a)
ȧ2 = (−i∆ + γ2)a2 − iJa1 − iga2x, (3.1b)

ẍ = −Γẋ− ω2
mx+ ~g

m
|a2|2. (3.1c)

Here, ∆ denotes the laser detuning ∆ = ω0 − ωL, and µ is the coupling rate between the
waveguide and the resonator a1. The numerical implementation of Eqs. (3.1) is done in atomic
units; the scaling procedure is outlined in Appendix B.1.
We note that the above equations (3.1) are written in the rotating frame of reference of

the optical excitation signal fin(t) = f0 exp(−iωLt), where f0 is the amplitude of the external
excitation laser and ωL is its frequency. The power Pin of the excitation laser transmitted
to the resonator a1 can be obtained from f0 via Pin = ~ωL|f0|2 [339]. The non-Hermitian
structure of Eqs. (3.1) originates from the imaginary part of the refractive index of the optical
cavity medium that confines the electric field, which we denote by the gain respectively loss
terms γ1 and γ2 [321, 325].

In the absence of any non-Hermiticity, the above system was reported to operate as a saser
(acoustic laser) device where the frequency splitting between the photonic supermodes of the
photonic molecule can be treated as a two-level system that can provide acoustic gain for
the mechanical mode [331]. In what follows we do not emphasize the saser action picture
presented in Refs. [59, 331] but rather treat the system from the dynamical point of view.
To link our analysis to recent experiments [331, 332], we use the parameters summarized in
Tab. 3.1.

The notion of PT symmetry in Eqs. (3.1) arises in the optical degrees of freedom in the
absence of driving, f0 = 0. That is, ignoring the mechanical degree of freedom, Eqs. (3.1) can
be cast into the form ∂tψ = −iHψ with ψ = (a1, a2)T , where the superscript T denotes the
matrix transpose, and H the non-Hermitian “Hamiltonian”

H =
(

∆ + iγ1 J
J ∆ + iγ2

)
. (3.2)

For balanced gain and loss, γ2 = −γ1, this “Hamiltonian” is invariant under combined parity
(P) and time-reversal (T ) transformation, whose effects are P : (a1, a2)T → (a2, a1)T and
T : i→ −i [344], and hence the “Hamiltonian” (3.2) is PT symmetric. Its eigenvalues in this
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case read as ±
√
J2 − γ2

1 , exhibiting an interesting feature: with increasing γ1 the eigenvalues
turn from purely real (γ1 < J) to purely imaginary (γ1 > J). Since also the corresponding
eigenvectors change from respecting PT symmetry (γ1 < J) to not respecting (or breaking)
PT symmetry (γ1 > J), one speaks of a PT phase transition which occurs at the exceptional
point γ2 = −γ1 = −J < 0, at which the eigenvalues of H coalesce [344, 345].

3.3 Steady-state solutions and their stability properties
To develop an understanding for the dependence of the mechanical degree of freedom on the
parameters pertaining to the optical degrees of freedom, it is instructive to start with the
investigation of the steady-state solutions of the classical amplitudes of Eqs. (3.1). Being
an indicator of the advantage a non-Hermitian WGM structure with gain might have over a
gain-less structure, our special focus in this analysis lies on the “optomechanical enhancement”,
a figure of merit introduced in Ref. [59]. In Sec. 3.3.1 we both analytically and numerically
study the dependence of the optomechanical enhancement on the laser power and frequency,
as well as WGM design parameters. The stability properties of the steady-state solutions,
which are essential to assess whether they are also dynamically reachable, are then examined
in Sec. 3.3.2.

3.3.1 Steady-state analysis
We start our analysis by investigating the steady-state solutions associated with the non-
Hermitian optomechanical system depicted in Fig. 3.2. We do so by setting the time derivatives
of a1,2 and x to zero and solving Eqs. (3.1) for the steady state xs of the mechanical oscillator.
This yields an algebraic cubic polynomial equation that can have up to three different real
solutions, corresponding to oscillator displacements which are invariant under the dynamics
of Eqs. (3.1).
In the following analysis, we concentrate on a figure of merit called “optomechanical

enhancement”. It quantifies the enhancement of the mechanical displacement obtained in
a WGM structure with optical gain as compared to the one obtained in a gain-less WGM
structure. To evaluate this figure of merit, we consider a reference system in which both optical
resonators have identical losses, i.e., γ1 = γ2 < 0. The resulting mechanical steady-state
amplitude xs,p serves as a reference to estimate the enhancement η,

η = xs
xs,p

. (3.3)

Here, the subscript p denotes the passive case, i.e., the case where both resonators have losses.
Accordingly, the optomechanical enhancement is an indicator of what advantage introducing
gain in one of the optical cavities has over gain-less cavities when aiming at achieving large
mechanical displacements. It has been shown in Ref. [59] that the optomechanical enhancement
can feature a gain-facilitated nonlinearity with respect to the pump power, i.e., η can increase
with decreasing pump power. Better understanding of such gain-facilitated nonlinearity can be
useful for engineering phononic systems, which is the reason we concentrate in the subsequent
analysis on the optomechanical enhancement η.

It is worth noting that in the work by Jing et al. [59], a strong enhancement η of two orders
of magnitude has been found at the PT symmetric point when γ2 = −γ1 and under resonant
excitation conditions, i.e. ∆ = 0. Here we also explore the case of off-resonant ∆ 6= 0 driving.
Besides, we note that that in Ref. [59] a different scaling of the optical amplitude f0 has been
used, i.e.

√
2γ1 instead of

√
2µ. Therefore, the enhancement values found in [59] are scaled

with respect to the ones obtained in this work.
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Analytical considerations

In order to gain an insight into the behavior of the system beyond the full numerical solution of
Eqs. (3.1), we first consider the optical modes only and ignore the driving term while accounting
for the nonlinear interaction between the mechanical oscillator and optical amplitude a2
through a non-linearly induced frequency shift. In other words, we treat the steady-state
displacement of the mechanical oscillator xs as a parameter that effectively introduces an
additional detuning ∆x ≡ gxs to the second cavity. Note that this detuning in reality depends
on the strength of the laser driving; a feature that is absent in this simplified analysis. Within
this picture, the optical amplitudes are modeled by the following linear equations:

∂t

(
a1
a2

)
= −i

(
iγ1 J
J ∆x + iγ2

)(
a1
a2

)
. (3.4)

By diagonalizing Eqs. (3.4), we obtain the eigenfrequencies of the two supermodes as well
as the associated linewidths as given by the real and imaginary parts, respectively, of the
complex frequencies

ω± = 1
2

(
∆x + i(γ1 + γ2)±

√
4J2 + (∆x − i(γ1 − γ2))2

)
. (3.5)

Hence, by scanning the frequency of the pump laser [represented by ∆ in Eqs. (3.1)] to match
the real part of either ω±, resonant interaction is expected to take place. From Equation (3.5),
the following features can be observed:

(i) For antisymmetric gain/loss profile (γ2 = −γ1 < 0) and low laser power (∆x � J, γ1),
we expect the system to exhibit two sharp resonances at ±

√
J2 − γ2

1 for J > γ1, while
for J < γ1 we expect a single broad resonance at zero.

(ii) For smaller values of the gain coefficient, 0 < γ1 < |γ2| with γ2 < 0 and nonzero ∆x,
the square root in Eq. (3.5) has both real and an imaginary parts, which we denote by
Re and Im, respectively. In this regime, the resonance frequencies of the supermodes
and their associated linewidths are given by ∆x/2 ± Re /2 and (γ1 + γ2)/2 ± Im /2,
and correspondingly we expect an asymmetric spectrum for positive and negative laser
detuning.

Our discussion so far has focused on the eigenfrequencies of the optical supermodes of the
photonic molecule in the absence of pumping. In order to gain more insight into the system’s
behavior, we now consider the effect of the driving field in our simple picture, i.e., we add
(
√

2µf0, 0)T to the right hand side of Eqs. (3.4). Under these conditions and by assuming a
constant detuning ∆x, we find that Eqs. (3.4) admit a non-trivial steady-state solution for the
field amplitudes a1,2. By noting that xs ∝ |a2|2 under steady-state conditions [cf. Eq. (3.1c)],
we find that the enhancement η is given by η = |a2|2/|a2,p|2 with p again indicating the
passive case with γ1 = γ2 < 0. By evaluating the quantity |a2|2/|a2,p|2 exactly at the onset of
the linear PT phase transition point, we obtain (see Appendix B.2 for the general case):

η = 1 + 4γ2
2

∆2
x

(γ2 = −γ1 = −J < 0). (3.6)

Equation (3.6) indicates that a larger nonlinearly-induced detuning ∆x will decrease the
enhancement factor η. Since the mechanical amplitude xs is proportional to the detuning ∆x

and increases with laser power, we expect the enhancement η to drop as the driving power
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Figure 3.3: Enhancement η as a function of the detuning ∆ for various laser powers Pin. In (a),
γ1 = γ0 and γ2 = −γ0 whereas in (b) γ1 = 0.8γ0 and γ2 = −γ0. The red, blue, and green lines
(from top to bottom) correspond to laser powers of Pin = 1µW, 7µW, and 30µW, respectively. Other
parameters as in Tab. 3.1.

increases. The reason we explicitly consider the PT point is that at this point the ratio
|a2|2/|a2,p|2 becomes particularly simple; for more details we refer to Appendix B.2.

Having gained some qualitative insight into the problem by using this simplified linearized
analysis, we turn to the discussion of the numerical steady-state results of the full nonlinear
system of Eqs. (3.1).

Numerical evaluation of the steady-state solutions

We now consider the full numerical evaluation of the steady-state solutions of Eqs. (3.1) under
general conditions. Figure 3.3(a) shows the enhancement factor η as a function of ∆/γ0 in the
PT symmetric case where γ1 = −γ2 = γ0. In this scenario, the enhancement curve displays
a plateau with no sharp peaks and its maximal value is found to occur at zero detuning
∆ = 0, in accordance with what was observed in Ref. [59]. Note that the point of maximal
enhancement (∆ = 0 and J = γ1 = −γ2) coincides with the exceptional point, at which the
eigenfrequencies of the supermodes of the linear system coalesce.

In Fig. 3.3(b), the case of unbalanced gain/loss profile, γ1 < γ0 and γ2 = −γ0, is shown. In
this case, two peaks of different heights that correspond to two different laser detunings can
be observed in the enhancement curve. Notably, at the location of the positive detuning peak,
the enhancement value even exceeds the one found for the PT symmetric case on resonance.
Our analysis thus uncovers the important result that PT symmetry is not necessarily the
optimum choice for obtaining stronger optomechanical interactions as compared to a passive
system. These results clearly show that the enhancement of the optomechanical coupling
coefficient is not simply an outcome of increasing the optical gain in resonator a1, but rather
a result of a complex interplay between the non-Hermitian parameters of the system (optical
gain and loss), detuning between the pump laser, the resonance frequency of the optical
cavities, and the properties of the acoustic mode. The asymmetry observed for the broken PT
symmetry case with γ1 6= −γ2 [Fig. 3.3(b)] can be understood in the light of our simplified
picture of the previous section where the effective detuning introduced to the second cavity a2
due to optomechanical interaction was shown to introduce an asymmetry to the supermode
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Figure 3.4: Enhancement η as a function of the detuning ∆ and the optical inter-cavity coupling J
at a driving power of Pin = 1 µW and γ1 = −γ2 = γ0. The horizontal white dashed line is a cross
section corresponding to the parameters of Fig. 3.3(a). The dashed black line shows the

√
J2 − γ2

0
dependence of the eigenfrequencies found from the simplified picture in the previous section [Eq. (3.5)].
Other parameters as in Tab. 3.1.

frequencies and linewidths.
Surprisingly, as the driving laser power is increased, the enhancement values drop, indicating

that the difference in the mechanical steady-state displacement between the active-passive
(gain/loss) and passive-passive (loss/loss) system vanishes. Conversely, the enhancement
increases nonlinearly with decreasing pump power. This feature is consistent with our
simplified picture introduced in the previous section where the enhancement factor was shown
to degrade with increasing nonlinearly-induced detuning ∆x [see Eq. (3.6)].
The resonant behavior of the enhancement curve [the appearance of two sharp peaks in

Fig. 3.3(b)] at nonzero detuning can occur not only when the optical gain in one cavity is
unequal to the loss in the other, but also in the case of equal gain and loss, provided that the
inter-cavity coupling exceeds the gain and loss values. This behavior is illustrated in Fig. 3.4,
where the optical inter-cavity coupling J is varied while maintaining balanced gain and loss,
γ1 = −γ2 = γ0. For J > γ0, the maximal enhancement is no longer found at the excitation
resonance ∆ = 0 but rather shifts to ∆ 6= 0, in good agreement with our earlier discussion
as outlined in (i) in the previous section (black dashed line in Fig. 3.4). That is, the sizable
enhancement value at the exceptional point (found on the dashed white line for ∆ = 0) is
outperformed by the enhancement obtained for J > γ0 at the position of the supermode
frequencies.
Finally, we consider the special case of zero-loss and zero-gain, i.e., γ1 = γ2 = 0, shown

in Figure 3.5. Under this condition, two different regimes for the steady-state solutions of
xs can be identified depending the excitation detuning ∆. In particular, within the range
0 < ∆ < ∆B, with ∆B/J ∼ 0.92/0.85/0.75 for laser drivings of 1/7/30µW, three real solutions
exist for xs. (∆B denotes the branching detuning value, i.e., the detuning at which the single
real solution for xs branches into three real solutions.) Note that two of these solutions diverge
as ∆ → 0. Conversely, when xs > ∆B, only one real solution exists. This is illustrated in
Fig. 3.5(a) where the diverging branches of the real solutions for xs are indicated by dotted
lines whereas the finite ones are plotted with solid lines. Figure 3.5(b) shows the enhancement
corresponding to the steady-state values of the finite branch in (a), evaluated as before with
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Figure 3.5: Steady-state amplitude xs (a) as well as enhancement factor η (b) as a function of the
detuning ∆ for various laser powers Pin and γ1 = γ2 = 0. The red, blue, and green lines (top to bottom
in the right panel, bottom to top in the left panel) correspond to laser powers of Pin = 1µW, 7µW,
and 30µW, respectively. Dotted lines indicate real solutions that diverge as ∆→ 0. The inset in (a)
shows an enlarged part of the steady-state amplitude for Pin = 1µW, indicating the presence of three
real solutions for ∆/J . 0.92, of which two are diverging as ∆→ 0. All other parameters are listed in
Tab. 3.1.

respect to a reference state with γ1 = γ2 = −γ0 = −J .
Considering Figs. 3.3(b) and 3.5(b), we see that the enhancement η of the mechanical

steady-state amplitude obtained in a loss-gain balanced system as compared to a system with
both cavities experiencing equal loss can be outperformed by introducing nonzero detuning.
In addition, even in the PT symmetric case a larger enhancement η can be obtained when
increasing the inter-cavity coupling J and tuning the laser frequency to the supermode
resonance frequency (cf. Fig. 3.4). This demonstrates that combining control over design
parameters (gain/loss rates and inter-cavity coupling strength) with laser control gives a
significant improvement in the range of tunability of the mechanical mode.

3.3.2 Stability analysis of the steady-state solutions

We have so far investigated only steady-state solutions. An important feature of these solutions
is their stability. In fact, any steady-state solution is dynamically meaningless unless it is
stable. We thus carry out the linear stability analysis of the fixed points of Eqs. (3.1) in this
section by linearizing Eqs. (3.1) around the steady-state values [346]. We do so by rewriting
the second-order differential equation Eq. (3.1c) as two first-order differential equations,

ẋ = v,

v̇ = −Γv − ω2
mx+ ~g

m
|a2|2.

By introducing a perturbation vector δ~q = (δa1r, δa1i, δa2r, δa2i, δx, δv)T (cf. also Ref. [339])
over any particular steady-state solution, substituting back in Eqs. (3.1) and neglecting higher
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Figure 3.6: Enhancement η as a function of the detuning ∆ and the gain-to-loss ratio γ1/γ2 ≡ γ1/γ0
at a driving power of Pin = 1 µW. All other parameters are listed in Tab. 3.1. The black region indicates
the parameter regime where steady-state solutions are not stable according to linear stability analysis.
Contours of equal enhancement η are also shown. The horizontal white dashed line corresponds to the
parameters of Fig. 3.3(b).

order terms, we find δ~̇q = Mδ~q, where the matrix M is given by

M =



γ1 ∆ 0 J 0 0
−∆ γ1 −J 0 0 0

0 J γ2 gxs + ∆ ga2i,s 0
−J 0 −gxs −∆ γ2 −ga2r,s 0
0 0 0 0 0 1
0 0 2~ga2r,s/m 2~ga2i,s/m −ω2

m −Γ


. (3.8)

The matrix M is the Jacobian matrix associated with perturbations of the steady state of
the nonlinear system of Eqs. (3.1); the subscript s denotes the steady state and r, i denote
real and imaginary parts, respectively, of the amplitudes a1,2. Note that M is a function of
the steady-state solutions and varies from one to another.
The stability of steady-state solutions for any set of given design/excitation parameters

depend on the eigenvalues of M . In particular, a given steady-state solution is stable if
all eigenvalues of M have negative real parts. In this case, the steady-state solution is
represented by a fixed point surrounded by an attracting region in phase space, meaning that
all trajectories in the vicinity of this fixed point will converge into it. Otherwise, if some of
the eigenvalues have positive real parts, the steady state becomes unstable and might exhibit
limiting cycles or display chaotic behavior [339, 346].

By constructing a linear stability map for the fixed points of Eqs. (3.1) as a function of the
gain γ1 > 0 and detuning ∆ parameters (see Fig. 3.6), we uncover the following remarkable
result: Steady-state solutions that correspond to the PT symmetric case γ1 = −γ2 = γ0 are
not stable. In other words, PT symmetry is not necessarily the optimal choice for enhancing
optomechanical interactions in the steady state. Instead, Fig. 3.6 shows that stable steady-
state solutions that exhibit significant enhancement (up to 200 fold) can be still achieved for
nonzero pump detuning and broken PT symmetry. Specifically, the gain values must satisfy
γ1/γ0 . 0.7 in order to guarantee stability over the full range of the considered detuning.
Hence, the peak enhancement in the case of Fig. 3.3(b), indicated by the white dashed line in
Fig. 3.6, as well as that reported in Ref. [59] is indeed misleading since it does not correspond
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Figure 3.7: Dynamics of the populations |a1(t)|2 (left column, solid red), |a2(t)|2 (left column, dashed
blue) and the mechanical oscillator amplitude x(t) (right column, solid green). In (a) and (b),
γ1 = −γ2 = γ0 whereas in (c) and (d) γ2 = −γ0 and γ1 = 0.8γ0. The laser power is Pin = 1µW and
∆ = 0 MHz; all other parameters are as listed in Tab. 3.1. Note the different scaling of the x and y
axes.

to stable steady-state solutions. As we will show later, including gain saturation effects can
result in stable steady-state solutions even in the PT symmetric case.
We conclude this section by noting that while linear stability analysis suffices to question

the validity of claims made on the basis of steady-state analysis alone, it does not provide
information regarding the dynamical behavior of the system, i.e., whether it converges to a
limit cycle or even becomes chaotic. In order to explore the full behavior of the system, we
now numerically integrate the temporal dynamics associated with Eqs. (3.1).

3.4 Nonlinear dynamics

In the previous section, we studied the stability properties of steady-state solutions associated
with optomechanical photonic molecules having optical gain and loss profiles (see Fig. 3.2).
We have shown that in the case of PT symmetry (equal gain and loss) the phase-space fixed
points are unstable. We also revealed that steady-state solutions that exhibit significant
enhancement in optomechanical interactions can be attained by tailoring the pump detuning
and the gain/loss profile (with unbalanced distribution). This analysis, however, leaves several
important questions unanswered: What are the dynamics when the steady-state solutions are
unstable? And further: What is the effect of gain saturation?

In this section we investigate the above posed questions. We begin by studying the temporal
evolution of the dynamical quantities |a1(t)|2, |a2(t)|2 and x(t) for the two different cases
depicted in Figure 3.3 (PT symmetry and unbalanced gain and loss) when the detuning is
zero and for an input laser power of Pin = 1µW. By integrating Eqs. (3.1) numerically, we find
that, in the first case of PT symmetric gain and loss distribution where γ1 = −γ2 = γ0, the
optical intensities and mechanical displacement grow exponentially as shown in Figs. 3.7(a)
and (b). (Note that we do not study long-time dynamics subsequent to the exponential
growth, which might exhibit chaotic features [339].) In contrast, Figs. 3.7(c) and (d) show
that for unbalanced gain and loss, γ1 = 0.8γ0 and γ2 = −γ0, the steady state is reached on a
timescale of ∼ 10µs.
While these results are consistent with stability analysis, it is important to note that the
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Figure 3.8: Dynamics of the populations |a1|2 (left column, solid red), |a2|2 (left column, dashed
blue) and the mechanical oscillator amplitude x(t) (right column, solid green). In (a) and (b), the
saturation parameter as = 103 whereas in (c) and (d) as = 104. In both plots, γ2 = −γ0, γ1 = 1.5γ0,
∆ = −5 MHz and Pin = 1µW; all other parameters as in Tab. 3.1. Note the different scaling of the y
axes.

unbounded exponential growth in the first case cannot continue indefinitely in general. In
fact, gain saturation mechanisms [344] are expected to regulate these divergence of the optical
and mechanical amplitudes.
Consequently, a full model should include a gain coefficient of the form γ1/(1 + |a1|2/a2

s)
with as being the gain saturation threshold, rather than just γ1 [344, 347]. By taking this
effect into account, which introduces an additional — gain saturation-induced — nonlinearity,
we find that the divergent mechanical oscillation amplitude behavior in Fig. 3.7(b) indeed
reaches a steady-state value. In contrast to our previous finding in the case of unsaturated
gain, for appropriate gain saturation threshold we now obtain steady-state solutions even in
the PT symmetric case (γ2 = −γ1 and ∆ = 0), with enhancement factors ranging from η ∼ 8
for as = 103 to η ∼ 340 for as = 3× 104, when using γ1 = J = γ0 and Pin = 1µW. Note that
we use different values for as in our simulations as the gain saturation threshold depends on
the details of the experiment.
Moreover, when we choose the design and pumping parameters such that γ2 = −γ0,

γ1 = 1.5γ0, ∆ = −5MHz and Pin = 1µW, we find two different dynamical regimes depending
on the value of the gain saturation. In particular, as shown in Fig. 3.8, whereas the system
reaches a steady state for as = 103, the dynamics converges to a sustained oscillation
reminiscent of an oscillator limit cycle for as = 104. This feature illustrates the potential
importance of accounting for effects such as gain saturation in order to understand reported
mechanical oscillatory dynamics [331]. Hence, taking into account gain saturation does
not only regulate the divergences previously observed in the mechanical displacement, but
introduces a new dynamical behavior: sustained oscillations.

Finally, in order to gain more insight into the dynamics of the mechanical degree of freedom
in the presence of an effective gain, we evaluate the mean values as well as oscillation amplitudes
as a function of gain and detuning. Figure 3.9 shows an exemplary dynamical landscape
obtained by using gain saturation with as = 104. Interestingly, near resonant pumping ∆ = 0,
the mechanical oscillator always relaxes towards a steady state. On the other hand, oscillatory
behavior can occur for off-resonant driving, highlighting the rich dynamics associated with
our optomechanical system under different conditions. For appropriate design parameters, the
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Figure 3.9: Analysis of the dynamics of the mechanical amplitude in the presence of gain saturation,
as = 104. In (a), the mean of the oscillation amplitude 〈x〉 is shown whereas (b) shows the amplitude of
the oscillation (maximal amplitude minus minimal amplitude). Back shading in (b) indicates parameter
regimes where a steady state rather than an oscillatory motion is reached. The laser power Pin = 1µW;
all other parameters are listed in Tab. 3.1.

dynamics of the mechanical degree of freedom can thus be tuned by changing the frequency
of the pumping laser. Accordingly, laser control combined with material design provides a
powerful tool to change dynamical as well as steady-state properties of the mechanical mode
in the considered optomechanical system.

In summary, we have carried out a comprehensive study of the static and dynamic behavior
of optomechanical interaction in non-Hermitian photonic molecules that support an acoustic
mode. Our steady-state analysis demonstrates that the strength of the interaction between
the photonic supermodes and the mechanical oscillators of an active (gain/loss) system
as compared to a passive (loss/loss) system can be significantly enhanced under different
conditions for design and pump parameters. Interestingly, we found that PT symmetry is not
necessarily the optimal choice for achieving maximum enhancement. Instead, we have shown
that pump frequency detuning can lead to higher enhancement values.
Furthermore, we have studied the linear stability properties of these systems and have

shown that the enhancement factors reported in the PT symmetric case near the exceptional
point correspond to unstable solutions. In this regard, we have identified regions in parameter
space that correspond to unbalanced optical gain/loss distribution and laser detuning, where
much stronger interactions (two orders stronger than the passive cavities) can be still achieved
for linearly stable solutions. In addition, we have investigated the dynamical evolution of
the system by numerically integrating the nonlinear equations. Our analysis revealed that
gain saturation effects play an important role in regulating the behavior of the otherwise
exponentially growing oscillations that correspond to unstable fixed points. Moreover, gain
saturation allows for two distinct dynamical behaviors, depending on the material design and
optical pump parameters: stable fixed points and sustained oscillations.



Chapter 4

Shifting individual modes between system and
environment

Abstract — Harmonic oscillator environments are a common means to
model complex open quantum system environments. In many cases of
interest, these environments are structured, which means that the coupling
strength of the environmental modes to the system degrees of freedom is
peaked around certain frequencies. These peaks can be decomposed into a
number of “pseudomodes”, damped modes that are strongly-coupled to the
system degrees of freedom. Shifting these modes from the environment to
the system part (or vice versa) can significantly ease numerical simulation.
For thermal environments, however, this procedure raises an issue: tem-
perature is incorporated via the initial environment state, and this state
is affected by the shift of modes between system and environment. Here
we show how the bath correlation function, which quantifies the effect of
the environment on the system, depends on different system-environment
partitionings. The environment we consider exhibits a particular, nested
structure: a single mode coupled to a harmonic bath. We find that the differ-
ences in the bath correlation function due to different system-environment
partitionings can give rise to pronounced differences in the dynamics of the
system. Our results demonstrate that when temperature is incorporated
as a property of the environment, the initial environment state has to be
chosen with care when modes are shifted between system and environment,
and system-environment correlations may have to be accounted for.

The work described in this chapter is based on the following publication [272]:

Pseudomodes and the corresponding transformation of the temperature-
dependent bath correlation function
D. W. Schönleber, A. Croy, and A. Eisfeld
Phys. Rev. A 91, 052108 (2015)
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4.1 Introduction

In a widely-adopted approach to open quantum systems, the microscopic model underlying
the environment consists of an infinite number of harmonic oscillators linearly coupled to the
system degrees of freedom [4, 5, 348]. The popularity of this particular model is owed to its
flexibility in simulating the intricate ambient environments of atomic or molecular systems.
In particular, both spectrum and frequency-dependent coupling of the environmental modes
can be adjusted to reproduce features observed in experiments; for instance, to describe the
effect of polar solvents on dyes [5, 348, 349] or to treat vibrational modes of molecules [5, 60].
Harmonic environment models have thus become an indispensable tool for the treatment of
open quantum systems.
The properties of a given harmonic environment are typically specified in terms of the

spectral density (SD). The SD expresses the coupling strength of the environment modes
as a function of their frequency, and hence encodes the information on the environment
that is provided by the open quantum system Hamiltonian. In many cases of interest,
the SD is structured, that is, the coupling strength of the environmental modes is peaked
around certain frequencies, which renders the environment furthermore non-Markovian [42,
43]. Remarkably, such a structured SD has an equivalent formulation in terms of what are
called “pseudomodes” [268, 350, 351]: damped, harmonic modes which are characterized by a
frequency and a linewidth accounting for the damping. In this way, structured environments
can be decomposed into a number of pseudomodes that couple strongly to the system degrees
of freedom. As an example, consider a group of molecules. There, one might be interested
in the dynamics of the electronic degrees of freedom and thus define those as the relevant
system. The remaining degrees of freedom, in particular the internal vibrational modes of the
molecule whose damping can be described via a coupling to another harmonic environment,
are accordingly defined as the environment. The resulting system-environment partitioning is
illustrated in Fig. 4.1(I). (For simplicity, we assume here that the relevant system degrees
of freedom are strongly coupled to a single vibrational mode, or pseudomode, which in turn
is coupled to an unstructured harmonic bath. See Ref. [60] for a detailed discussion of the
relation between an internal vibrational mode and a pseudomode.) Alternatively, one might
explicitly include the strongly-coupled (important) vibrational mode in the system part and
treat the remaining unstructured (Markovian) part as the environment. This partitioning is
illustrated in Fig. 4.1(II). Note that the very same considerations apply in the case of some
electronic degrees of freedom being coupled to an imperfect (lossy) cavity [269, 271, 351].
Since in open quantum system theory only the system part is treated explicitly, different

system-environment partitionings have immediate consequences for simulation approaches.
That is, the environment in partitioning (I) is unstructured and hence Markovian, which may
be convenient for some approaches. The rapid growth of the system Hilbert space associated
with the explicitly-treated pseudomodes may render partitioning (II) the favorable one for
other approaches. To adapt the system-environment partitioning according to the preferred
(numerical) treatment, it is thus convenient to switch between different partitionings.

The discussion of switching between different system-environment partitionings has so far
focused on the spectral density (SD) [37–39, 41, 60–63]. It has been shown, for example,
how the coupling strength of the remaining environment modes transform when certain
(pseudo)modes are shifted from the environment part to the system part; a procedure that
allows one, for instance, to render a non-Markovian environment Markovian [60, 62, 63]. In
transformations of the SD, however, an important environment property is not accounted
for: temperature. This additional information on the environment is contained in the bath
correlation function.
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Figure 4.1: Illustration of two different ways to partition a nested open quantum system structure
(top panel) into system and environment. The structure consists of relevant system degrees of freedom
(rel. sys) strongly coupled to a pseudomode (see main text for details), which in turn is coupled to a
harmonic bath. In partitioning (I), both rel. sys and pseudomode are defined as system. In partitioning
(II), in contrast, only the rel. sys are defined as system, which results in a structured environment
consisting of both pseudomode and harmonic bath.

The bath correlation function (BCF) [4, 5, 42, 263, 352] quantifies temporal correlations of
environmental degrees of freedom and eventually determines the influence of the environment
on the system. It also depends on the coupling strengths of the environmental modes and their
frequencies, but additionally incorporates temperature via the initial environment state. That
is, the environmental modes are taken to be initially in thermal equilibrium at a specified
temperature. Since system and environment are typically assumed to be uncorrelated in
open quantum system theory, shifting individual modes from the environment part to the
system part raises the question of how the initial environment state should be chosen and
what consequences different choices have.

In this chapter, we study the dependence of the BCF on different system-environment
partitionings. In particular, we examine the effect of two different initial environment states,
a factorizing and a correlated one, on the BCF. We consider an exemplary model (cf. Fig. 4.1)
consisting of a harmonic bath coupled to a single pseudomode (PM). This PM we then couple
to another harmonic oscillator that acts as a system, thus allowing us to study the influence of
the different BCFs on a system dynamics. The structure of this nested environment is again
the same as the one employed in Chaps. 2 and 3: the system is directly coupled to a finite
environment part, which in turn is coupled to a macroscopic environment part. Whereas in
the previous chapters, we were concerned with manipulating system properties using a nested,
controllable environment, we now address the question of whether or not the environment
structure is arbitrary, i.e., whether or not changing the system-environment partitioning can
change a system’s dynamics.

The chapter is structured as follows: In Sec. 4.2, we introduce the microscopic model on
which our discussion is based. We outline the procedure according to which BCFs transform
and state analytic formulas for the case of a single PM coupled to a harmonic bath. In Sec. 4.3,
we evaluate the transformed BCFs numerically and discuss some examples, highlighting the
regimes in which notable differences are induced by different initial states. Our analysis shows
that environment transformations come with a caveat: thermal environment properties are
encoded in the initial environment state, and different initial-state choices can give rise to
different system dynamics. Accordingly, care has to be taken in choosing appropriate initial
states after environment transformations.
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4.2 Model system and analytic transformations
In this section, we detail model Hamiltonian and framework necessary to perform the analytic
transformation of the BCF presented at the end of the section. In Sec. 4.2.1 we review the
standard model of a system linearly coupled to an environment of independent oscillators and
introduce the model Hamiltonian we consider in this chapter in Sec. 4.2.2. Subsequently, in
Sec. 4.2.3, we discuss two particular ways to partition this Hamiltonian into a system and an
environment part and explain then in Sec. 4.2.4 how the transformed BCF can be calculated.
Lastly, we specify two initial environment states and present the corresponding transformed
BCFs in Sec. 4.2.5.

4.2.1 Standard model for harmonic environments
We start our discussion by reviewing the standard model of a system linearly coupled to an
environment of independent harmonic oscillators, which will allow us later on to point out
differences in the transformed BCFs more clearly.
In the standard model, the total Hamiltonian is partitioned into three parts,

Htot = HS +HS-E +HE, (4.1)

where HS denotes the Hamiltonian of the system, containing the degrees of freedom in which
one is interested in, and

HE =
∑
µ

ω̃µc
†
µcµ (4.2)

the Hamiltonian of the environment. Here, cµ is the annihilation operator of an environment
mode with frequency ω̃µ; the frequencies ω̃µ define the spectrum of the harmonic environment.
Since the oscillators in HE are uncoupled, we call the environment HE diagonal.
For linear coupling between system and environment, the Hamiltonian accounting for the

interactions between system and environment reads as

HS-E = LS

(∑
µ

kµc
†
µ + H.c.

)
. (4.3)

The coupling Hamiltonian HS-E couples the environment modes cµ via the system coupling
operator LS linearly to the system, with strength kµ. For convenience, one now encodes this
frequency-dependent coupling in the SD, defined as (ω > 0)

J(ω) =
∑
µ

|kµ|2δ(ω − ω̃µ). (4.4)

The SD allows one to easily assess the frequencies at which environment modes couple strongly
to the system. Note that we set ~ = kB = 1 throughout this chapter.

The relevant quantity typically entering open quantum system approaches such as Redfield [4,
5], Caldeira-Leggett [3, 4] and non-Markovian quantum state diffusion [352, 353] is the BCF.
Microscopically, the BCF is the (two-time) correlation function of the environment operators
in the system-environment coupling Hamiltonian and thus quantifies the temporal correlations
of environmental degrees of freedom. Since the fluctuations induced by a linearly-coupled
harmonic environment are strictly Gaussian [4], and Gaussian statistics is completely defined
by its second-order statistics (assuming zero mean), the BCF fully characterizes the influence
of the environment on the system. For Hermitian LS, the BCF is given by

α(t, t′) = TrE
{(
C(t) + C†(t)

) (
C(t′) + C†(t′)

)
ρE(0)

}
, (4.5)
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with C(t) denoting the time-dependent environment coupling operator, defined as

C(t) = eiHEt
∑
µ

(
k∗µcµ

)
e−iHEt ≡

∑
µ

k∗µcµ(t). (4.6)

To obtain Eq. (4.5) in the given form, the total initial state of system and environment is
taken to be separable,

ρtot(0) = ρS(0)⊗ ρE(0). (4.7)

This implies that no correlations between system and environment exist before the interaction
between system and environment is ‘turned on’. As we will see later, this assumption, which
is typically introduced by virtue of the ease of computation, establishes the significance of
system-environment partitioning.

For a non-Hermitian system coupling operator LS, the BCF is no longer given by Eq. (4.5).
Rather, two correlation functions are required [354], reading as

α1(t, t′) = TrE
{
C(t)C†(t′)ρE(0)

}
and (4.8a)

α2(t, t′) = TrE
{
C†(t)C(t′)ρE(0)

}
. (4.8b)

If the BCF is stationary, i.e., if α(t, t′) is a function of the time difference only, α(t, t′) =
α(t− t′, 0), it is convenient to write α(τ) ≡ α(τ, 0), with τ = t− t′. Note that the stationarity
of the BCF depends on the initial state of the environment in general.
If the initial state of the diagonal environment ρE(0), which enters Eq. (4.5), is a thermal

state (and if LS is Hermitian), the BCF of the environment is of the ‘standard’ form

α(τ) =
∫ ∞

0
dωJ(ω)

(
coth

(
ω

2T

)
cos(ωτ)− i sin(ωτ)

)
, (4.9)

with τ = t− t′. In Eq. (4.9), T denotes the temperature of the environment and J(ω) the SD.
For a detailed review of SD and BCF in the standard case we refer to Appendix C.1.

4.2.2 Model Hamiltonian with PM

We now introduce the total Hamiltonian on which we focus here, which is of the form

Htot = Hrel +Hrel-PM +HPM +HPM-B +HB. (4.10)

In Eq. (4.10), Hrel contains the relevant degrees of freedom we are interested in. This relevant
part is via the Hamiltonian

Hrel-PM =
(
g∗bL† + H.c.

)
, (4.11)

linearly coupled to the PM, whose Hamiltonian reads as

HPM = Ωb†b. (4.12)

Here, L is some operator in the Hilbert space of the relevant Hamiltonian Hrel, g a coupling
constant quantifying the strength of the coupling, and Ω the frequency of the PM with
annihilation operator b. In addition, the PM is coupled to a diagonal bath

HB =
∑
λ

ωλa
†
λaλ, (4.13)
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Figure 4.2: Illustration of two different ways of performing a system-environment partitioning in
the presence of a PM linearly coupled to both system and bath. In (I), the system part SI consists
of the relevant system degrees of freedom linearly coupled to the PM, which in turn is coupled to
an (unstructured) environment EI whereas in (II) the system SII directly couples to a (structured)
environment EII including the PM.

where ωλ are the frequencies belonging to the bath modes λ with annihilation operators aλ.
The coupling Hamiltonian HPM-B is taken to be bilinear,

HPM-B =
∑
λ

(
κ∗λaλb

† + H.c.
)
, (4.14)

with κλ being the coupling constants quantifying the coupling between PM and bath modes.
The generalization of our discussion to several PMs is straightforward in many cases of interest
(e.g., for single linear chains of PMs [37, 38] and multiple linear chains [39, 41]), and will be
addressed at the end of this section.

4.2.3 System-environment partitioning
We now consider two particular examples of assigning the PM to the different parts of the total
Hamiltonian, illustrated in Fig. 4.2. This leads to different choices of the system Hamiltonian
HS, the environment Hamiltonian HE, and the coupling between them. We denote the two
different ways of partitioning by SI and SII for the system and EI and EII for the environment,
respectively.

PM in the system

The first partitioning [(I) in Fig. 4.2] is to take the PM as part of the system, which amounts
to setting

HSI = Hrel +Hrel-PM +HPM, (4.15)
HEI = HB, (4.16)

and
HSI-EI = HPM-B. (4.17)

Note that the system now contains besides the relevant degrees of freedom also the PM, and
that the environment is in the standard form (4.2).

PM in the environment

The second partitioning is illustrated in panel (II) in Fig. 4.2. Here, the system is given by

HSII = Hrel, (4.18)

while the environment EII contains both PM and bath,

HEII = HPM +HPM-B +HB. (4.19)
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Accordingly, the coupling between system and environment is given by

HSII-EII = HS-PM. (4.20)

Note that the environment Hamiltonian HEII is not in the standard form (4.2), since the
environment is not diagonal. It can, however, be diagonalized by a simple transformation, as
detailed in Appendix C.2.

4.2.4 Calculation of the BCF
In terms of the SD, it is known how to transform between different ways of system-environment
partitioning [42, 60, 61, 63, 350]. For this procedure, it is sufficient to know the total
Hamiltonian, since the SD is fully encoded in Htot.

The BCF, however, depends on the initial environment state, denoted by ρEI(0) and ρEII(0),
respectively, for the two settings depicted in (I) and (II) in Fig. 4.2. Note that to obtain an
uncorrelated total initial state of form (4.7), we need ρtot(0) = ρSI(0)⊗ ρEI(0) in setting (I)
whereas ρtot(0) = ρSII(0)⊗ ρEII(0) in setting (II). In setting (I), the environment is diagonal
and we can therefore directly use Eq. (4.5) to calculate the BCF. In setting (II), in contrast,
the environment EII is not diagonal. Nonetheless, we can similarly to Eq. (4.6) write down
the time evolution of the environment coupling operator,

B(t) = g∗ eiHEIIt b e−iHEIIt ≡ g∗ b(t), (4.21)

whose time dependence arises via transformation into the interaction picture with respect to
the environment Hamiltonian HEII.
For a Hermitian system operator L = L†, HS-PM can be written as HS-PM = L(g∗b+ gb†),

which has a Hermitian environment coupling operator. In this case, the BCF is given by

α(t, t′) = TrEII
{(
B(t) +B†(t)

) (
B(t′) +B†(t′)

)
ρEII(0)

}
≡
〈(
B(t) +B†(t)

) (
B(t′) +B†(t′)

)〉
EII

, (4.22)

where ρEII(0) denotes the initial density operator of the environment and the subscript EII of
the trace indicates that the trace is taken over the environmental degrees of freedom.
To evaluate the BCF (4.22), it is convenient to take advantage of the existence of a linear

transformation between the PM operator b and the operators in which the Hamiltonian HEII
and the initial state, respectively, are diagonal (cf. Appendix C.2). Specifically, we first
transform the PM operator into the basis in which the environment Hamiltonian HEII is
diagonal, b(t) = [Sc̄(t)]0, by means of the transformation matrix S. The time evolution of
the annihilation operators cµ of the diagonal Hamiltonian HEII, however, is simply given by
cµ(t) = e−iω̃µtcµ, where ω̃µ denote the eigenenergies of HEII. Subsequently, the operators cµ
are transformed into the basis in which the initial state is diagonal, if necessary, and the BCF
is evaluated.

4.2.5 Choice of initial environment states
As discussed in the previous section, the total initial state in case (I) is typically taken to be
ρtot(0) = ρSI(0) ⊗ ρEI(0). When moving the PM from the system part to the environment
part, i.e., going from (I) to (II), one could thus reason that the initial state of the environment
EII should be given by ρEII(0) = ρPM(0) ⊗ ρEI(0). Conversely, if one considers the PM to
be part of the environment EII from the very beginning on, there is no reason why the PM
should be uncorrelated with EI. From this point of view, a correlated initial state between
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PM and EI seems to be more ‘natural’. To clarify the implications of the two aforementioned
choices, we employ these initial states when evaluating the BCF in setting (II) in the following.
We note that these two initial states are indeed of interest, since they arise in the calculation
of absorption and emission spectra, where the factorized state corresponds to the initial state
relevant for absorption spectra calculations while the correlated initial state to the one relevant
for emission spectra calculations [355, 356].

Factorizing initial state between PM and EI

The first initial state we consider is the one typically associated with factorizing initial
conditions between PM and bath EI,

ρFEII(0) = 1
Z
e−β

(
Ωb†b+

∑
λ
ωλa

†
λ
aλ
)
, (4.23)

where β = 1/T is the inverse temperature and the partition function Z is defined such that
TrEII{ρFEII(0)} = 1; the superscript F here denotes the factorized initial PM-bath state. This
particular initial state is widely used, owing to its convenient properties in analytic calculations.
The physical assumption implied is that during thermal equilibration with an ambient heat
bath no correlations are built up between PM and bath EI; a reasoning that only holds in the
limit of vanishing coupling between PM and bath since only in this limit independent thermal
equilibration (i.e., equilibration to the respective canonical states) of two coupled systems
exists [357–360] (cf. also Refs. [361, 362]).
Evaluating the BCF (4.22) with factorizing initial state, we find (see Appendix C.2 for

details)

α(t, t′) = |g|2
∑
µ,ν,η

[
S∗0µS0νSηµS

∗
ηνe

i(ω̃µt−ω̃νt′)n(ωη)

+S0µS
∗
0νS
∗
ηµSηνe

−i(ω̃µt−ω̃νt′) (n(ωη) + 1)
]
. (4.24)

Here, n(ω) is the mean occupation number of an environment oscillator with frequency ω,

n(ω) = 1
(eβω − 1) . (4.25)

Note that Eq. (4.24) is not in the form of Eq. (4.9); in fact, we cannot even write α(t, t′) =
α(t− t′, 0).

Thermal (correlated) state of PM and EI

The second initial state we consider we call diagonal initial state; we thereby denote the
canonical state of the environment EII. This state we obtain for increased coupling between
PM and bath EI, since with increasing coupling the equilibrium state of PM and bath will be
given by the thermal state of the joint PM-bath environment, which no longer factorizes into
a PM and a bath part. Introducing the creation (annihilation) operators of the eigenmodes of
the joint PM-bath system c†µ (cµ), the global thermal state reads as

ρDEII(0) = 1
Z
e
−β
∑

µ
ω̃µc
†
µcµ . (4.26)

Here, the superscript D denotes the diagonal initial PM-bath state, implying that at t = 0
PM and bath have jointly evolved towards a thermal state whose occupation depends on the
eigenenergies ω̃µ of the composite system. As before, Z is defined such that TrEII{ρDEII(0)} = 1.
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For the diagonal initial state, the BCF reads as (τ = t− t′)

α(τ) = |g|2
∑
µ

|S0µ|2
[
eiω̃µτn(ω̃µ) + e−iω̃µτ (n(ω̃µ) + 1)

]
. (4.27)

Note that Eq. (4.27) is of the same form as in the standard case [cf. Eq. (C.5)] and can hence
be written in the standard form (4.9), using a transformed SD.

Discussion

Equations (4.24) and (4.27) allow for several observations. Firstly, the BCF comprises of the
time evolution of the eigenmodes of the PM-bath environment weighted by the populations
of the eigenmodes in the initial state. Secondly, we explicitly see that for factorizing initial
conditions the BCF is non-stationary (for small times) whereas in the case of a diagonal initial
state we obtain a stationary BCF. This is to be expected, since for a PM-bath environment
in thermal equilibrium, the expectation value of any number operator (e.g. b†b) should not
depend on time — which is exactly what we observe if we set τ = 0 in Eq. (4.27). (As
α(t, t′) ∝ 〈b†(t)b(t′) + b(t)b†(t′)〉EII, the stationarity of 〈b†(t)b(t)〉EII can be directly read
off from the BCF.) Conversely, for factorizing initial state, the environment is not in its
equilibrium in the beginning, which renders the BCF non-stationary.

The procedure outlined above can be generalized straightforwardly to, e.g., linearly-coupled
chains of PMs of which the last PM is possibly coupled to a diagonal harmonic bath [38, 63],
directly-coupled PMs with independent baths [363], or a combination of both [39, 41]. As
the BCF of the system is determined by the correlation function of the PM operator directly
coupled to the system, we simply need to adjust HEII in the above treatment; the calculation
of the BCF then proceeds in the exact same manner as detailed above.

Since the neglect of initial correlations can lead to noticeable differences in the dynamics [358,
364, 365], depending on the parameters of the underlying Hamiltonian, we now turn to the
discussion of numerical examples.

4.3 Numerical examples

4.3.1 Evaluation of the transformed BCFs

In our numerical examples, we take as spectral density for EI an Ohmic SD with exponential
cutoff (ω > 0),

JEI(ω) = ηωe−ω/Λ, (4.28)

where Λ is the cutoff frequency and η a scaling for the overall coupling strength. For numerical
purposes, we sample JEI(ω) at discrete frequencies ωλ. The couplings κλ of Eq. (4.14) we
obtain by evaluating the quadrature [60]

κλ =
√
J(ωλ)∆ωλ, (4.29)

with ∆ωλ = (ωλ+1 − ωλ−1)/2 for λ = 2, . . . , N − 1; ∆ω1 = ω2 − ω1 and ∆ωN = ωN − ωN−1.
The sampling range is chosen such that the full SD is covered. For the particular cases shown,

we use N = 4000 bath oscillators for the numerical discretization, with equidistantly-spaced
frequencies, starting from 0.002 Λ. For the sake of clarity of presentation, we choose the PM
frequency close to the maximum of the Ohmic SD, setting Ω = 1.5 Λ. This choice renders the
coupling between PM and bath strongly dependent on the overall scaling of the SD, which is
quantified by η.
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Figure 4.3: Bath correlation functions α(t, t′)/|g|2 for different coupling strengths η and different
reference times t′. The left column [panels (a) and (c)] shows the BCF for weak PM-bath coupling,
η = 0.25, whereas the right column [panels (b) and (d)] shows a strong coupling regime, η = 1.0. In the
first row [panels (a) and (b)], the reference time of the BCF is set to t′ = 0, in the second row [panels
(c) and (d)], t′ = 32.5 Λ−1. Solid blue lines indicate the real part of the BCF with factorizing initial
state (4.23), dashed green lines the real part of the BCF with diagonal initial state (4.26). Dotted
lines show the corresponding imaginary parts. The insets in panel (c) and (d) provide a detail of the
short-time dynamics, while the inset in (a) shows the SD JEI(ω) (dashed red line) with the position of
the PM indicated by a solid vertical line. The BCFs were calculated using T = 46 Λ and Ω = 1.5 Λ.

Note that the Hamiltonian HEII is positive for all parameters employed in the numerical
calculations discussed in this section, and that the finite recurrence time of the BCF is large
enough to observe complete decay of the BCF.
We now evaluate the BCFs (4.24) and (4.27) with the described numerical procedure for

different couplings η and times t′. Using the SD (4.28), this yields the BCFs displayed in
Fig. 4.3. There, the left column [(a) and (c)] corresponds to relatively weak coupling η = 0.25
whereas the right column [(b) and (d)] to relatively strong coupling between PM and bath EI,
with η = 1.0. Furthermore, the first row [(a) and (b)] shows the BCFs evaluated at t′ = 0
while the second row [(c) and (d)] shows the BCFs evaluated at t′ = 32.5 Λ−1.

As can be seen from Figs. 4.3(a) and (b), at t′ = 0 pronounced differences emerge between
the two different initial conditions (blue versus green) as the coupling η is increased. On the
one hand, the damping of the BCF is increased in the presence of strong coupling η = 1.0, with
the overall equilibration time of the BCF increasing as well, which results in different dynamics
for the two initial states. On the other hand, the initial value α(0, 0) of the BCFs changes,
highlighting the increasing differences between the initial states that manifest themselves in
the dynamics of the BCF.

Considering the BCFs evaluated at t′ = 32.5 Λ−1, shown in Figs. 4.3(c) and (d), we observe
that the BCFs obtained from different initial states look very similar, with the strongest
difference being a transient equilibration dynamics present for factorizing initial conditions,
which gets more noticeable in the case of strong coupling η. The differences found between the
different initial states for t = t′ = 0 have almost vanished at t = t′ = 32.5 Λ−1 [cf. Figs. 4.3(a)
and (c) and Figs. 4.3(b) and (d), respectively], due to the fact that equilibration has already
taken place before t = 32.5 Λ−1.

The non-stationarity of the BCF for factorizing initial conditions is related to what is called
“initial slippage” if a system is coupled to a Markovian environment. In such systems, a
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Figure 4.4: Spectral density JEII(ω) (black, solid line) for (a) η = 0.25 and (b) η = 1.0 obtained from
Fourier transformation of the BCF (see main text for details). As the BCFs for diagonal and factorizing
initial state (evaluated at tc.m. = 130 Λ−1) coincide, they yield identical SDs. In both panels, the red,
dashed line indicates the original SD of the Ohmic bath, which has been scaled by the factor denoted
in red. All other parameters are as in Fig. 4.3.

non-Markovian feature can be present at small times due to the fact that Markovian dynamics
for the total system requires correlations between system and environment that are not
present initially if factorizing initial conditions are employed [4, 366]. Hence, slippage of
initial conditions can remedy non-Markovian dynamics introduced by an initially uncorrelated
system-environment state. In the same manner, the BCFs displayed in Fig. 4.3 need some
time to equilibrate for factorizing initial conditions before reaching ‘stationarity’ [364].

4.3.2 Corresponding SDs

The SD, as defined in Eq. (4.4), is fully determined by the total Hamiltonian. Consequently,
it should not depend on the initial state of the environment. For a diagonal environment, the
SD can be extracted straightforwardly from the BCF owing to the relation (4.9) between BCF
and SD. That is, for the diagonal initial state, the SD can be obtained by Fourier transforming
Eq. (4.27) with respect to the time difference τ and dividing by the factor 2π[n(ω) + 1]
[cf. Eq. (C.9)]. For factorizing initial state, we can rewrite Eq. (4.24) as a function of the
center-of-mass coordinate tc.m. = (t+ t′)/2 and the time difference τ = t− t′ and perform a
Fourier transformation with respect to τ .

The spectral densities corresponding to the parameters of Fig. 4.3 are shown in Fig. 4.4. For
large times tc.m., tc.m. & 120 Λ−1, the difference between the Fourier transformations obtained
from the BCFs using a diagonal and a factorizing initial state, respectively, vanish. For this
reason, we show only a single SD in Fig. 4.4.
The SDs obtained from the BCFs perfectly agree with the analytical result of Ref. [60],

which has been obtained by direct transformation of the SD. The transformation of the BCF
calculated above is thus consistent with the known transformation of the SD. Note, however,
that in Ref. [60] another convention for the SD has been used, i.e., the SD is defined as
ω2J(ω) in our convention. For a discussion of the advantage of the convention employed in
this chapter, see Ref. [363].
As shown in Fig. 4.4, for weak coupling η = 0.25, the SD exhibits only a single peak at

approximately the PM frequency Ω, with a width proportional to the coupling η. For large
coupling η = 1.0, the single peak is split into two and the coupling strength at the PM
frequency is reduced. This illustrates that for large PM-bath coupling, the bath properties
indeed become relevant for a system coupled to the PM.
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Figure 4.5: Bath correlation function α1(t, 0)/|g|2 (solid lines) and system mean occupation number
nsys(t) ≡ 〈d†(t)d(t)〉EII (dashed lines) for different initial conditions and different coupling strengths g.
In the left panel (a), g = 0.3 Λ, whereas the right panel (b), g = 0.08 Λ. Thin blue lines indicate the
BCF with factorizing initial state (4.23), thick green lines indicate the BCF with diagonal initial state
(4.26). Only the real parts of the BCFs are shown. The inset shows the PM mean occupation number
nPM(t) ≡ 〈b†(t)b(t)〉EII for g = 0.3 Λ (dashed line) and g = 0.08 Λ (solid line) for both initial states.
Except for η = 1.0 and Ωsys = 0.46 Λ, the parameters of Fig. 4.3 have been used. Note that α1(t, 0) is
approximately α(t, 0)/2 in Fig. 4.3.

4.3.3 Corresponding system dynamics

We now turn to analyzing the effect of the features seen in Fig. 4.3 on a system observable.
To that end, we specify the system operator L (L†) in Eq. (4.11) as the annihilation (creation)
operator d (d†) of a harmonic oscillator with frequency Ωsys, with the associated system
Hamiltonian reading as

HSII = Ωsysd
†d. (4.30)

This particular set of non-Hermitian coupling operators allows us to conveniently evaluate the
dynamics of the total system via diagonalization, as outlined in Sec. 4.2.4 and Appendix C.2.
The corresponding correlation functions α1(t, t′) and α2(t, t′), defined in Eqs. (4.8a) and (4.8b),
can be easily read off from Eqs. (4.24) and (4.27).
Choosing the values η = 1.0 and Ωsys = 0.46 Λ for the above parameters, and requiring

nsys(0) ≡ 〈d†(0)d(0)〉EII = 0, we obtain Fig. 4.5 for two different system-PM couplings,
g/Λ = 0.3 and g/Λ = 0.08. Note that only α1(t, t′) is shown in Fig. 4.5 since for the
parameters chosen, α2(t, t′) is indistinguishable from α1(t, t′) on the scale of the figure. The
reason for choosing Ωsys relatively small is that the steady-state value of nsys(t) decreases
with increasing Ωsys, such that absolute differences in nsys(t) are suppressed for large system
frequencies. Likewise, we have to choose η large in order to ensure that the system dynamics,
which is only indirectly coupled to the bath via the PM, is affected by the bath.

For strong coupling of the PM to both system [g = 0.3 Λ, Fig. 4.5(a)] and bath, we observe
a marked difference in the mean occupation number nsys(t) between the results attained from
using different initial states. This difference highlights that in case of a strongly-coupled PM,
the initial state of the environment becomes important for the transient system dynamics.
In contrast, the equilibrium values of both nsys(t) and nPM(t) are independent of the initial
environment state [364]. If we decrease the coupling g to the system mode (or, similarly, the
coupling η to the bath oscillators), the difference in the dynamics decreases [cf. Fig. 4.5(b)]
and the appropriate choice of initial conditions of the environment becomes less important.
The same applies for choosing Ωsys large, as this results in a lower steady-state value of nsys(t)
and consequently smaller overall deviations.
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Moreover, the time it takes for the system to equilibrate increases as g is decreased [cf.
Fig. 4.5(b)], as the equilibration of the system only proceeds via interaction with the PM.
Conversely, the PM equilibrates faster for small system-PM coupling g (cf. inset), since in
this case the strong PM-bath coupling dominates the equilibration dynamics of the PM. This
again illustrates that for small system-PM coupling, it is indeed valid to assume a factorized
initial environment state since the differences induced by the BCF rapidly vanish from the
system’s point of view.
For low bath temperature, the differences in the dynamics persist, however, they become

hardly observable due to the steady-state values (as well as the initial conditions) being
significantly smaller as compared to high bath temperature. Hence, at low temperature,
absolute deviations are reduced while relative deviations are preserved.
Our numerical simulations show for different initial environment states pronounced differ-

ences in the transient dynamics of a system that via a PM strongly couples to an Ohmic bath.
Thus, any scheme sensitive to the transient behavior of the BCF crucially depends on the
choice of initial conditions of the total system.
In summary, we have analytically and numerically studied the the BCFs resulting from

effectively treating a harmonic oscillator (PM) linearly coupled to a harmonic bath as part of
the bath, for a factorizing and a correlated initial state between PM and bath. We outlined
the procedure to analytically derive the transformed BCF and discussed concrete examples
for regimes in which the differences in the BCFs arising from different initial states manifest
themselves in a different dynamics of the system, which we take to be a harmonic oscillator
linearly coupled to the PM. This establishes a simple framework to evaluate transformed BCFs
of PMs coupled to a harmonic bath. In particular, we find that in the case of a correlated,
diagonal initial state, the BCF features all the properties typically assumed for a BCF (i.e.,
stationarity, detailed balance, and the relation (C.9) between the Fourier transform of the
BCF and the SD). By contrast, for a factorizing initial state these properties do not apply,
owed to the non-stationarity of the BCF in this case. Only after a transient equilibration
dynamics that can induce different system dynamics, they are recovered.
Our findings highlight that (i) the differences between the BCFs for the different initial

states (factorizing and diagonal initial state) are negligible for small PM-bath coupling or
PM-system coupling respectively, as expected, yet (ii) these differences can have strong impact
on the system dynamics if the PM is strongly coupled to both system and bath. Therefore,
in case of a strongly-coupled PM, an appropriate initial state of the environment has to
be used for the transformation of the BCF when considering a system’s dynamics in the
presence of finite temperature. This emphasizes the relevance of accounting for correlations
in strongly-coupled systems, which is not specific to our particular system [360, 367]. The
question as to which initial state is to be considered as appropriate cannot be answered a
priori, but has to be answered in consideration of the specific case.

This analysis of the dependence of the BCF on different initial states arising from different
system-environment partitionings complements the investigation of environment transforma-
tions (e.g., the mapping of a structured bath consisting of many harmonic oscillators to a linear
chain of oscillators [37–39]), which focused on the SD. It reveals that the initial environment
state has to be chosen with care when mapping different system-environment partitionings or
environment structures onto each other, which may be performed for numerical convenience
or for the ease of implementation [11, 41]. The caveat here comes with the assumption
often-employed in open quantum system theory, namely that system and environment are
initially uncorrelated. Unless the partitioning between system and environment is obvious on
physical grounds, correlations between system and environment might need to be introduced
to guarantee the equivalence of different system-environment partitionings.





Chapter 5

Summary and outlook

In this thesis we studied various facets of reservoir engineering in different physical platforms,
using a particular, nested environment structure: our system is coupled to a finite part of the
environment, which in turn is coupled to a macroscopic part. Our aim was to demonstrate the
flexibility of such an environment structure for reservoir engineering, with applications ranging
from quantum simulation to system-state preparation, and to investigate its limitations. We
have done so by applying this nested structure in an atomic system of interacting Rydberg
atoms, an optomechanical system of non-Hermitian resonators, and an open quantum system
model of harmonic oscillators. With the Rydberg atomic system, we have shown that the
tunable atomic environment provided by laser-driven decaying atoms allows one to realize
a quantum simulator for excitation transport in the presence of a decohering environment.
With the optomechanical system, we have investigated the tunability of the mechanical mode
via control of the optical non-Hermitian resonator environment. Lastly, we have examined
how the properties of a nested, harmonic environment depend on the initial environment
state. We thereby explicated a caveat that comes with transformations between different
system-environment partitionings, which are performed to cast the environment into a form
that is easy to implement in numerical or quantum simulation approaches. We will first
expand on the aforementioned findings and the associated further research questions before
giving an overview and a personal perspective of our thesis’ results.

In Chapter 2 we showed that an aggregate of Rydberg atoms interacting with a laser-
driven atomic environment, which is dissipative though its coupling to the electromagnetic
continuum, can serve as a quantum simulator for excitation transport. We demonstrated that
the atomic environment allows for experimentally accessible transport imaging, that is, for
optical discrimination between the two Rydberg states involved in the excitation transport.
We also established a link between the information on the aggregate state obtained by the
environment and quantum back-action, namely dephasing of the transport. To assess the
environment properties of a gas consisting of many environment atoms, for which a full
numerical treatment is inhibited by the exponential increase of environment states, we derived
an effective model for the aggregate dynamics by adiabatically eliminating environment states.
The atomic environment essentially only enters this model through energy shifts and dephasing
of the aggregate states. We showed that both dominant dephasing with Gaussian statistics
and dominant energy disorder with non-Gaussian statistics can be realized in our setup,
which give rise to diffusive and sub-diffusive transport dynamics respectively. Furthermore,
we demonstrated that non-Markovian aggregate dynamics with a tunable degree of non-
Markovianity can be achieved via control of atomic distances, laser intensities and frequencies.
Lastly, we constructed a thermal environment with optically controllable temperature for
the Rydberg aggregate and showed that specific aggregate states, such as Bell states, can be
prepared.

Our proposal expands the toolbox available for quantum simulation of excitation transport
by providing an experimentally accessible setup in which a broad range of environment
effects can be achieved through the highly-controllable atomic environment. The realization
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of such a simulator will benefit the study of excitation transport in open systems, be it
semiconductors or light-harvesting complexes, as it allows the investigation of the transition
between coherent and incoherent transport, properties of non-Markovian transport dynamics,
and non-equilibrium transport effects pertaining to the coupling to a thermal environment.
Our findings demonstrate the high degree of control that can be attained through nested
environments, here consisting of laser-driven atoms, which are coupled to a photonic continuum
through spontaneous emission.

The flexibility of this nested environment for system control raises additional questions that
merit further research. In particular, while we have shown that our atomic environment allows
us to induce various dynamical effects, we did not classify the genericness of our environment.
Answering this question requires a characterization of the environment similar to the one
performed for harmonic environments through spectral density and bath correlation function.
Once such a characterization has been carried out and the capabilities and limitations of
our nested environment have been analyzed, it would be of great interest to investigate
whether a mapping between other characterization schemes (e.g., using spectral density and
bath correlation function) and the developed one could be established. If this was the case,
environment models of light harvesting complexes, for example, could be directly mapped
onto our quantum simulator setup, which would provide us with a fully-fledged, multipurpose
quantum transport simulator.
Apart from these general questions, our setup provides fertile ground for further research.

For instance, it would be interesting to investigate whether and how time-dependent laser fields,
possibly even combined with feedback schemes [182], can benefit system control. Additionally,
adopting a thermodynamic point of view [368] might shed more light on the connection between
the energy flow from or to the system (manifested in the change in aggregate eigenstate
populations) and the energy absorbed by the environment from the laser fields. Furthermore,
since our effective model for the aggregate dynamics was derived via adiabatic elimination
of environment states, it is not valid in parameter regimes in which adiabatic elimination
cannot be performed, such as the regime in which non-Markovian aggregate dynamics arises.
Accordingly, it would be highly desirable to extend the model to these parameter regimes. This
would help understand the conditions under which, for example, non-Markovian aggregate
dynamics is induced. In addition, it would profit the characterization of our environment
and could help numerically explore the physics of large ensembles of environment atoms.
Lastly, our quantum simulator might be extended to applications beyond excitation transport
simulations by allowing for more than a single excitation in the Rydberg aggregate or by
introducing additional microwave fields.

In Chapter 3 we studied the tunability of the mechanical mode dynamics of an optomechan-
ical system via its optical environment. The environment consists of two optical resonators,
which are non-Hermitian due to their coupling to gain- and loss-providing environments. In
particular, we analyzed the (optomechanical) enhancement of the mechanical steady-state
displacement in resonators with optical gain, compared to gain-less resonators. The enhance-
ment depends on the optical design parameters as well as the optical pumping intensities and
frequencies. We showed that the steady state of the mechanical mode is rendered unstable,
according to linear stability analysis, above a certain optical gain value, which leads to
exponentially increasing mechanical displacement. By introducing the effect of gain saturation
in the description of our system, this regime of divergent mechanical displacement was found
to be regulated, and a new regime of self-sustained oscillations emerged.
Our analysis amended and clarified the findings of Ref. [59], which discussed this non-

Hermitian optomechanical system in the context of a phonon laser and emphasized the
advantage of balanced gain and loss, i.e., PT symmetry, and resonant driving for achieving a
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large optomechanical enhancement. In contrast, our study revealed that off-resonant driving
with unbalanced gain and loss (broken PT symmetry) yields a larger enhancement. We
found that the mechanical displacement exponentially increases in the by Ref. [59] suggested
parameter regime of resonant optical pumping and balanced gain and loss, which challenges
the physical meaning of the enhancement in this case. Accordingly, our investigation provides
additional insight into the interplay between optical non-Hermiticity and displacement of the
mechanical mode, which is relevant for designing optomechanical devices.
In our study we have focused on the classical limit of the optomechanical equations of

motion, which, owing to their simplicity, allowed us to perform a comprehensive analytical
and numerical investigation of the optomechanical enhancement as a function of optical design
and laser parameters. A comprehensive analysis of the quantum aspects in greater detail than
in Refs. [59, 369] is still lacking. In particular, it would be interesting to see whether or not
the notion of phonon lasing proves useful apart from its appealing similarity to optical lasing.
Additionally, the potential for, e.g., the preparation of nonclassical oscillator states [370],
synchronization of mechanical oscillators [371] or generation of entanglement between the
optical or mechanical modes [372] using reservoir engineering in our non-Hermitian system is
still to be investigated, and could trigger exciting device applications. Lastly, an understanding
of whether optomechanical systems with more than two optical resonators (and consequently
higher-order exceptional points [373]) might profit engineering approaches would be valuable
for designing optomechanical systems.

In Chapter 4 we investigated the effect of different system-environment partitionings in
an environment consisting of a harmonic mode coupled to a macroscopic harmonic bath.
We analytically and numerically studied the transformation of the bath correlation function
quantifying the effect of the environment on system dynamics under different partitionings.
Differences in the bath correlation function were found to arise as a consequence of different
initial state choices for the composite environment associated with the different partitionings,
namely factorized and correlated initial states between mode and bath. We demonstrated
that differences in the bath correlation function can lead to pronounced, transient differences
in the mean occupation number of a harmonic oscillator system.

Our investigation reveals that transformations between different system-environment parti-
tionings or environment structures, which are routinely performed in terms of the spectral
density for reservoir engineering purposes, can be non-equivalent if the initial environment
state is not preserved. In particular, since environment temperature enters via the ini-
tial environment state, care has to be taken in choosing appropriate initial states when
transforming between different environment structures in the presence of temperature; and
system-environment correlations may have to be accounted for. Our study discloses the
inconsistency between the assumption of initially uncorrelated system-environment states and
such transformations. The insight gained into the role of correlations between the various
parts of a nested environments allows one to better assess in which cases different environment
structures can yield the same action.
To supplement the results on environment transformations in terms of the spectral den-

sity [37–39, 41, 60–63] by explicit formulas for the temperature-dependent (and thus initial-
state-dependent) case, it would be desirable to extend the formulas derived in this work to
arbitrary environment structures. Another research direction arises from the relevance of
accounting for initial system-environment correlations when describing open quantum systems
(see, e.g., Refs. [356, 360, 367]), where an investigation of common physical settings that have
to be described through correlated initial states would be of strong interest. In addition,
further tools in open quantum system theory have to be developed and the existing ones have
to be extended [374], to account for potential system-environment correlations.
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The results obtained in this thesis demonstrate the high degree of system control that
can be attained through a nested environment with both a finite and macroscopic part. In
particular, by allowing one to admix properties of the finite environment to macroscopic
environment properties, a broad range of environment effects can be realized, as illustrated,
for example, in Chapter 2. This shows that nested environment structures provide valuable
resources for reservoir engineering and open system control, whether for state preparation or
quantum simulation.
To extend the scope of applicability of nested environments, a deeper insight into their

generic features would be highly desirable. Ideally, a comprehensive characterization of nested
environment properties would provide tools to map between equivalent physical system-
environment structures. Given the properties of a certain environment, one could then assess
which structure was able to realize these properties; and augmenting this knowledge with the
qualities of different physical platforms would allow one to determine the platform best fitted
for implementation. Moreover, such a theory could ease the transfer of ideas or developments
between different research fields and facilitate the design of hybrid quantum devices. These
interconnectable devices could push new boundaries by taking advantage of the exceptional
qualities of the various physical platforms involved.
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A.1 Calculation of radial Rydberg wave functions
In Sec. 2.2.1 we have briefly discussed the properties of Rydberg states of alkali atoms. Here
we detail the numerical calculation of radial wave functions of rubidium Rydberg states (cf.
Refs. [147, 149]). In contrast to the main part of the thesis, we employ Hartree atomic units
in this section, i.e., we set ~ = me = e = 1/(4πε0) = 1. This implies that all length scales
are given in units of the Bohr radius a0 = 0.052917721 nm, and all energies in units of the
Hartree energy 4.359744× 10−18 J; the Rydberg constant becomes Ry = 1/2 in atomic units.
Being an element of the alkali metal group, rubidium has a single valence electron. In

a Rydberg state, this electron is on average located far away from the core consisting of
nucleus and inner-shell electrons. The inner-shell electrons shield the nuclear charge seen
by the valence electron, resulting in a hydrogen-like core potential for the highly-excited
valence electron. This allows us to solve a hydrogen-like problem for the valence electron in a
singly-charged core potential instead of solving the full many-electron problem for valence
electron and inner-shell electrons in the potential of a multiply-charged nucleus.

In spherical coordinates (r, θ, φ) with r denoting the distance of the valence electron from the
core and (θ, φ) the azimuthal and polar angle, respectively, we can hence write the Hamiltonian
for the valence electron wave function ψn`jmj (r, θ, φ) as

H = −1
2∇2 + Vcore(r) + Vso(r), (A.1)

with −∇2/2 being the kinetic energy, Vcore(r) the core potential, and Vso(r) the spin-orbit
interaction. The choice of spherical coordinates is motivated by the spherical symmetry of
the core potential. Note that we approximated the reduced mass of the valence electron by
one in Eq. (A.1).
Since the Hamiltonian (A.1) does not mix angular and radial degrees of freedom, we can

write the wave function of the valence electron ψn`jmj (r, θ, φ) analogously to the hydrogen
case as a product of radial and angular part,

ψn`jmj (r, θ, φ) = Rn`j(r)Y`jmj (θ, φ), (A.2)

with Rn`j(r) denoting the radial wave function and Y`jmj (θ, φ) the generalized spherical
harmonics. The explicit form of Y`jmj (θ, φ) can be found in Ref. [375]. The generalized
spherical harmonics are eigenfunctions of the spin-orbit coupling operator L ·S with L and S
denoting the operators of total orbital angular momentum respectively spin. The spin-orbit
coupling operator couples angular and spin degrees of freedom, leading to the quantum
numbers j and mj associated to the total angular momentum operator J = L+S. Note that
spin-orbit interaction is important for the theoretical description of heavy alkali atoms such
as rubidium [139, 144, 376].
From the full Schrödinger equation for the valence electron wave function,

Hψn`jmj (r, θ, φ) = En`jψn`jmj (r, θ, φ), (A.3)
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we can now extract the Schrödinger equation for the radial part Rn`j(r) of the valence electron
wave function, reading as[

−1
2

1
r2

∂

∂r

(
r2 ∂

∂r

)
+ `(`+ 1)

2r2 + Vcore(r) + Vso(r)
]
Rn`j(r) = En`jRn`j(r). (A.4)

The first term on the left hand side of Eq. (A.4) comes from the radial part of the momentum
operator −∇2/2 in spherical coordinates. The second term, called centrifugal barrier, is
obtained by applying the angular part of the momentum operator — the angular momentum
operator — to the eigenfunctions of the angular Hamiltonian. The two further terms, which
we discuss now, are given by the core potential Vcore(r) and the spin-orbit interaction Vso(r).

The core potential Vcore(r) describes the effective potential seen by the valence electron,
incorporating the effect of the inner-shell electrons. Far away from the core, the core potential
for the valence electron is essentially given by a Coulomb potential −1/r, while in the vicinity
of the core it is exposed to a different potential, determined by the substructure of the core.
The effective core potential Vcore(r) can be quantified using a parametric model potential of
the core [377], which looks Coulomb-like for large core-electron distances but is modified close
to the core. In terms of the static dipole polarizability αc of the ionic core, the radial charge
Z`(r), and the cutoff radius rc introduced to truncate unphysical short-range contributions,
the parametric model potential reads as [377]

Vcore(r) = −Z`(r)
r
− αc

2r4

(
1− e−(r/rc)6)

. (A.5)

The radial charge Z`(r) depends on the nuclear charge Z (Z = 37 for rubidium) and the
angular momentum ` via the parameters a1, . . . , a4,

Z`(r) = 1 + (Z − 1)e−a1r − r(a3 + a4r)e−a2r. (A.6)

The parameters a1, . . . , a4 and rc are obtained by parametrically fitting the energy eigenvalues
of the solution of the Schrödinger equation for the alkali valence electron to the empirically
observed energy levels [377, 378]. Their values are listed in Ref. [377]. For a recent discussion
of the quality of the model potential (A.5), see Ref. [379].

The spin-orbit interaction Vso(r), due to which states of different total angular momentum j
are shifted in energy with respect to each other, with En`j′ > En`j for j′ > j, can be accounted
for via the term [378]

Vso(r) = α2
fs
2 (L · S) 1

r

dVcore(r)
dr

[
1− α2

fs
2 Vcore(r)

]−2

, (A.7)

with αfs denoting the fine structure constant, αfs ≈ 1/137. The product L ·S can be evaluated
using the relation

L · S = 1
2
(
J2 −L2 − S2

)
, (A.8)

which evaluates to (j(j + 1)− `(`+ 1)− s(s+ 1))/2 when applied to an electronic eigenstate
∝ Y`jmj (θ, φ). Accordingly, the state of the valence electron is uniquely determined via the
quantum numbers n, `, j,mj with n being a positive integer number, ` an integer number
ranging from 0 to n− 1, j = `± s, and mj ranging from −j to j with integer increments.
We do not consider other relativistic corrections such as the so-called Darwin term [375].

The Darwin term modifies wave functions very close to the core (for hydrogen with a Coulomb
potential the Darwin correction is proportional to δ(r)) and is thus not of great relevance
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for Rydberg states, even less if one considers overlap integrals between s states and angular
momenta states with ` > 0, which are mostly localized far away from the core.
To obtain the radial eigenfunctions Rn`j(r), one typically solves the Schrödinger equation

(A.4) using empirically determined eigenenergies En`j as input, either by directly plugging in
the observed En`j or by making use of Eq. (2.4), in which the quantum defects are determined
such that the resulting energies En`j coincide with the empirically observed eigenenergies.
Note that we do not correct the Rydberg constant in Eq. (2.4) for the finite mass of the
rubidium nucleus by replacing the electron mass by the reduced electron mass, since the
resulting correction is negligible for our purposes.

It is convenient to rescale the radial wave function to simplify the structure of the Schrödinger
equation (A.4). A common choice is to set Rn`j(r) = ρn`j(r)/r, for which the Schrödinger
equation reads as

∂2

∂r2 ρn`j(r) +
[
2 (En`j − Vcore(r)− Vso(r))− `(`+ 1)

r2

]
ρn`j(r) = 0. (A.9)

An alternative rescaling, which is designed to give an approximately constant number of points
in each lobe of the wave function on an equidistant grid of the radial coordinate is obtained
by making the substitutions u =

√
r and χ = r3/4R(r) in the Schrödinger equation [34, 380],

leading to the equation

∂2

∂u2χ(u) +
[
8u2

(
En`j − Vcore(u2)− Vso(u2)

)
−

(2`+ 1
2)(2`+ 3

2)
u2

]
χ(u) = 0. (A.10)

Note that to calculate, for instance, expectation values for the rescaled wave function χ(u) in
Eq. (A.10), a transformed radial integral has to be used [380],

〈rk〉 =
∫ ∞

0
Rn`j(r)rkRn′`′j′(r)r2dr =

∫ ∞
0

χn`j(u)u2kχn′`′j′(u)u2du. (A.11)

Both equations (A.9) and (A.10) are of the type [ ∂2

∂r2 +X(r)]f(r) = 0, which is particularly
fitted to be solved using Numerov’s method [381]. Following this numerical approach, the
radial wave function is calculated by starting the integration outside the classically forbidden
region at a radius rs > 2n2 and integrating inwards up to a inner cutoff radius rc [34].
Subsequently, the wave function is normalized to one. In practice, we start the integration
with random initial values for r and its radial derivative at rs = 2n(n+ 15) and end, for low
` states (` ≤ 4) at rc = 3

√
αc [157]. Since in the classically forbidden region the solutions

of the radial Schrödinger equation are a rising and a falling exponential, the admixture of
the incorrect solution is damped out exponentially while integrating inwards, such that the
final, normalized result is independent of the initial condition. For high ` states (` > 4), we
numerically determine the inner turning point and terminate the integration when the integral
starts to diverge, i.e., when r2

iR
2
n`j(ri) > r2

i+1R
2
n`j(ri+1) with ri < ri+1. For Rydberg states of

high orbital angular momentum ` > 4, it is advisable to employ Eq. (A.10) rather than the
‘standard’ scaling (A.9) for numerical accuracy. To verify accurate numerical implementation,
we compared our numerical results with the dipole moments for rubidium Rydberg states
listed in Refs. [99, 165, 382, 383], finding . 0.2 % deviation between the listed values and the
values obtained by our numerical implementation, as shown in Tab. A.1.

A.2 Derivation of an effective model for excitation transport
Here we derive the effective model for the aggregate dynamics that we discuss in Sec. 2.4.1,
following Ref. [247]. We start with a derivation that ignores coupling between the aggregate
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Matrix element This work (a0) Literature value (a0) Deviation (%) Reference

〈46d5/2|r|48p3/2〉 1551 1548 0.2 [382]
〈46d5/2|r|44f7/2〉 1586 1587 0.06 [382]
〈46d5/2|r|47p3/2〉 2708 2709 0.04 [382]
〈46d5/2|r|45f7/2〉 2694 2694 − [382]
〈50d5/2|r|52p3/2〉 1844 1840 0.2 [383]
〈50d5/2|r|48f8/2〉 1893 1893 − [383]
〈35d5/2|r|37p3/2〉 877 875 0.2 [383]
〈35d5/2|r|33f7/2〉 882 882 − [383]
〈58d3/2|r|56f5/2〉 2596 2594 0.08 [165]
〈58d3/2|r|60p1/2〉 2565 2563 0.08 [165]
〈46s1/2|r|45p1/2〉 1924 1924 − [99]

Table A.1: Comparison of radial matrix elements of 87Rb states with literature.

atoms and continue by extending the derivation to the case where aggregate coupling is a
non-perturbative effect.

Neglecting aggregate coupling

We now formally adiabatically eliminate the “excited” states |e〉 and |r〉 of all background
atoms to arrive at an evolution equation for the aggregate alone. The essential step is to
divide the many-body Hilbert space into a space of interest and its complement. The former
is represented by the projector

Pg =
∑
n

|πn〉〈πn| ⊗ |g〉〈g| , (A.12)

where the first part acts on the state space of the aggregate atoms and the second on that of
the background atoms. The projector |g〉〈g| with |g〉 = |g . . . g〉 projects on the state where all
background atoms are in their ground state |g〉. The complement of the space projected onto
by Pg is thus formed by all many-body states involving any |e〉 or |r〉 state of the background
atoms, projected onto by Pe = 1− Pg.
Segregating the total Hamiltonian H = Hagg +Hagg-bg +Hbg +Hbg,int (see Sec. 2.2.5) of

aggregate and background atoms into segments using the projection operator formalism [247],
we obtain:

Hg = PgHPg = PgHaggPg, (A.13)

He = PeHPe = Pe

[∑
α

(Ωc

2 [|r〉〈e|]α + H.c.
)
−∆p [|e〉〈e|]α − (∆p + ∆c) [|r〉〈r|]α

+Hagg-bg +Hbg,int +Hagg

]
Pe, (A.14)

C+ = PeHPg = Pe

[∑
α

Ωp

2 [|e〉〈g|]α

]
Pg, C− = C†+. (A.15)

After adiabatic elimination of the complement of our space of interest and to second order in
C± [247], the effective master equation for the reduced aggregate density matrix defined as
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ρ(agg) =
∑
nm ρnm |πn〉〈πm| reads as

ρ̇(agg) = −i[Hg +Heff , ρ
(agg)] +

∑
α

L
L

(α)
eff

[ρ(agg)], (A.16)

with the respective effective operators given by [247]

Heff = −1
2C−[H−1

NH + (H−1
NH)†]C+, (A.17)

L
(α)
eff = LαH−1

NHC+. (A.18)

Here, Lα is the Lindblad operator (2.24) corresponding to the spontaneous decay of the excited
state |e〉α of atom α. Central to the effective equation are the non-Hermitian Hamiltonian
HNH = He − i

∑
α L
†
αLα/2 and its inverse H−1

NH, which we obtain now.
It can be seen that if we neglect the interactions between background Rydberg atoms given

by Hbg,int as well as Hagg as we do from now, the Hamiltonian HNH decomposes into the
block structure

HNH =
⊗
nα

[
|πn〉〈πn| ⊗ H(nα)

NH

]
, (A.19)

where H(nα)
NH acts only within the space spanned by |e〉α and |r〉α. In that basis, H(nα)

NH explicitly
reads as

H(nα)
NH =

(
−iΓp/2−∆p Ωc/2

Ωc/2 V̄nα −∆p −∆c

)
, (A.20)

where V̄nα = V
(pr)
nα +

∑
m6=n V

(sr)
mα is the overall interaction of the specific background atom α

with the entire aggregate if the latter is in the state |πn〉. In this basis, we further have

C(nα)
+ =

(
Ωp/2

0

)
, L(n)

α =
(√

Γp, 0
)
. (A.21)

Due to the block structure (A.19), we find the inverse of HNH when we find the inverse of
H(nα)

NH , which is(
H(nα)

NH

)−1
= 1

(−iΓp/2−∆p) Ṽnα − Ω2
c/4

(
Ṽnα −Ωc/2
−Ωc/2 −iΓp/2−∆p

)
, (A.22)

introducing the total energy shift of the Rydberg level of background atom α as Ṽnα =
V̄nα −∆p −∆c.
Plugging the excitation and de-excitation operators (A.21) into the effective equations

(A.17) and (A.18), we finally obtain

ρ̇(agg) = −i[Hagg +Heff , ρ
(agg)] +

∑
α

L
L

(α)
eff

[ρ(agg)], (A.23)

where the effective quantities Heff and L(α)
eff are given by

Heff =
∑
n,α

H(nα)
eff |πn〉〈πn| , L

(α)
eff =

∑
n

L
(nα)
eff |πn〉〈πn| , (A.24)

with the respective elements reading as

H(nα)
eff =

Ω2
pṼnα(Ω2

c + 4Ṽnα∆p)
Ω4
c + 8Ṽnα∆pΩ2

c + 4Ṽ 2
nα(Γ2

p + 4∆2
p)
, (A.25a)

L
(nα)
eff = 2iṼnα

√
ΓpΩp

2Ṽnα(Γp − 2i∆p)− iΩ2
c

. (A.25b)
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In the limit ∆p = ∆c → 0, we arrive at the expressions 2.70 in Sec. 2.4.1.
Note that Eq. (A.16) is obtained from a second-order perturbative expansion in C± assuming

that the “excited” states |e〉 are |r〉 are almost unpopulated and the ground state dynamics
governed by Hg is slow compared to the “excited” state manifold, such that adiabatic
elimination can be applied. The validity of these assumptions is discussed in detail in
Sec. 2.4.1. In addition, we assumed in the derivation of Eq. (A.16) that interactions within the
ground state manifold are much weaker than those of the “excited” states contained by HNH.
Due to this assumption, we did not account for an effect of the ground state dynamics on
the effective processes, such that the excited-state contribution to the effective Hamiltonian
(A.17) is independent of Hg. We will weaken this assumption now.

Beyond weak aggregate coupling

Following again Ref. [247], we now diagonalize the Hamiltonian Hg and include its action into
the effective operators. In particular, introducing the eigenvalues Ek and the corresponding
eigenvectors

|ϕk〉 =
∑
j

cjk |πj〉 , (A.26)

of the aggregate Hamiltonian Hagg, we can define the non-Hermitian matrices H(k)
NH = HNH −

EkI, where I denotes the identity operator. The inverse of (H(knα)
NH ), the non-Hermitian

Hamiltonian in the space spanned by |e〉α and |r〉α belonging to state |πn〉 [cf. Eq. (A.19)]
reads as

(H(knα)
NH )−1 = −2

2(Ṽnα − Ek)(2Ek + 2∆p + iΓp) + Ω2
c

(
2(Ṽnα − Ek) −Ωc

−Ωc −(2Ek + 2∆p + iΓp)

)
.

(A.27)
Applying the formalism explicated in Ref. [247] and defining κnmk = cnkc

∗
mk, we finally obtain

Heff =
∑
n,m

∑
α,k

κnmk Ω2
p

2

[
(Ṽnα − Ek)

2(Ṽnα − Ek)(2Ek + 2∆p + iΓp) + Ω2
c

+ (Ṽmα − Ek)
2(Ṽmα − Ek)(2Ek + 2∆p − iΓp) + Ω2

c

])
|πn〉 〈πm| , (A.28a)

L
(α)
eff =

∑
n,m

(∑
k

−2Ωp
√

Γp(Ṽnα − Ek)κnmk
2(Ṽnα − Ek)(2Ek + 2∆p + iΓp) + Ω2

c

)
|πn〉 〈πm| , (A.28b)

for the terms to be inserted in Eq. (A.23). In Fig. 2.15 in the main part we show that for the
parameters of Tab. 2.2, this extended effective model is able to capture the occupation of the
aggregate eigenstates, in contrast to the effective model given by Eqns. (A.24) and (A.25).
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B.1 Rescaling of the optomechanical equations of motion
Here we show how Eqs. (3.1) can be expressed in atomic units, which is a convenient choice
for numerical calculations. We start with the optomechanical equations of motion given in
the form of Eqs. (40) and (41) in Ref. [58], namely

∂ta1 = (−i∆ + γ1)a1 − iJa2 +
√

2µf0, (B.1a)
∂ta2 = (−i∆ + γ2)a2 − iJa1 − iGa2x, (B.1b)

∂2
t x = −Γẋ− ω2

mx+ ~G
m
|a2|2. (B.1c)

Note that the complex classical field amplitudes a1,2 are dimensionless in Eqs. (B.1) whereas x
has the dimension of length. We now re-express every frequency in units of ∆0 (e.g. ∆̃ = ∆/∆0
and f̃0 = f0/

√
∆0), which implies also scaling of the time, t̃ = t∆0,

∂t̃a1 = (−i∆̃ + γ̃1)a1 − iJ̃a2 +
√

2µ̃f̃0, (B.2a)
∂t̃a2 = (−i∆̃ + γ̃2)a2 − iJ̃a1 − iG̃a2x, (B.2b)

∂2
t̃ x = −Γ̃∂t̃x− ω̃2

mx+ ~G̃
m∆0

|a2|2. (B.2c)

As a next step, we express lengths in terms of the Bohr radius a0 and masses in terms of
the electron mass me, leading to x̃ = x/a0, g̃ = G̃a0 = Ga0/∆0, and m̃ = m/me, which
transforms Eqs. (B.2) into

∂t̃a1 = (−i∆̃ + γ̃1)a1 − iJ̃a2 +
√

2µ̃f̃0, (B.3a)
∂t̃a2 = (−i∆̃ + γ̃2)a2 − iJ̃a1 − ig̃a2x̃, (B.3b)

∂2
t̃ x̃ = −Γ̃∂t̃x̃− ω̃2

mx̃+ g̃

m̃
|a2|2

~
me∆0a2

0
. (B.3c)

Choosing now ∆0 = Ehartree/~ = ~/mea
2
0 leads to ~/(me∆0a

2
0) = 1, such that no further

rescaling is needed. Thus, Pin = ~ωL|f0|2 = ~ωL∆0|f̃0|2.
This shows that one can express Eqs. (B.3) in atomic units (in which ∆0 is the frequency

associated with the Hartree energy, ∆0 = Ehartree/~) without introducing units to the
amplitudes a1,2. Equations (B.3) have been implemented numerically for the calculations of
Chap. 3.

B.2 Optomechanical enhancement in the two-resonator model
In this short section we discuss the steady-state solutions of Eqs. (3.4) in more detail. In
addition to the parameters of Eqs. (3.4) we further include the laser detuning ∆. According
to the reasoning above Eq. (3.6), the enhancement η can be calculated from the steady-state
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solutions of the classical optical field amplitude a2 via η = |a2|2/|a2,p|2, where the subscript p
again denotes the passive case with γ1 = γ2 < 0, yielding

η = J4 + 2J2(γ2
2 −∆(∆ + ∆x)) + (γ2

2 + ∆2)(γ2
2 + (∆ + ∆x)2)

J4 + 2J2(γ1γ2 −∆(∆ + ∆x)) + (γ2
1 + ∆2)(γ2

2 + (∆ + ∆x)2)
. (B.4)

From this equation, two limits are readily obtained: For large detuning ∆, the enhancement η
goes as

η
|∆|→∞−→ 1, (B.5)

in agreement with Fig. 3.3 and Fig. 3.6. On the PT point (γ2 = −γ1 = −J < 0),

η = 1 + 4γ2
2

∆2
x

, (B.6)

which is Eq. (3.6) in the main text. Note that letting ∆x → ∞ independent of, e.g., the
detuning ∆ is misleading because the mechanical steady-state displacement xs does exhibit a
detuning dependence in the full model. However, the qualitative behavior of the enhancement
with transmitted laser power is captured even in the simple model.
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C.1 Microscopical definitions of BCF and SD
In this section we review the definition of the bath correlation function (BCF) and the spectral
density (SD) on basis of the microscopic model introduced in Chapter 4. We consider the
same total Hamiltonian as introduced in Eq. (4.1),

Htot = HS +HS-E +HE, (C.1)

consisting of a system part HS, an environment part HE [Eq. (4.2)], and a coupling part HS-E
[Eq. (4.3)] accounting for the interaction between system and environment.

Following Sec. 4.2.1, the BCF for a Hermitian system coupling operator LS is given by [cf.
Eq. (4.5)]

α(t, t′) =
〈∑
µ,µ′

(
k∗µcµ(t) + H.c.

) (
k∗µ′cµ′(t′) + H.c.

)〉
E

=
∑
µ

|kµ|2
(〈
cµ(t)c†µ(t′)

〉
E

+
〈
c†µ(t)cµ(t′)

〉
E

)
, (C.2)

where the second equality sign holds if the initial environment density operator ρE(0) is taken
to be a function of the number operators c†µcµ. Here, the angle brackets denote the trace over
the environment, 〈·〉E = TrE{·ρE(0)}.

Thermal environment
In the following, we take the environment to be in a thermal state,

ρE(0) = 1
Z
e
−β
∑

µ
ω̃µc
†
µcµ , (C.3)

where Z is defined such that TrE{ρE(0)} = 1 and β is the inverse temperature, β = 1/T .
The time evolution of the environment operators cµ can be calculated by means of the

Heisenberg equations of motion (cf. Appendix C.3),

∂tcµ(t) = ieiHEt[HE, cµ]e−iHEt = −iω̃µcµ(t), (C.4)

where the time dependence refers to the interaction picture with respect to HE and cµ(t) =
eiHEt cµ e

−iHEt. Using the usual commutation relation [cµ, c†µ′ ] = δµµ′ and evaluating the trace
in Eq. (C.2) in the number basis |nµ〉, we find

α(t, t′) =
∑
µ

|kµ|2
(
e−iω̃µ(t−t′)(n(ω̃µ) + 1) + eiω̃µ(t−t′)n(ω̃µ)

)
, (C.5)

with the mean occupation number n(ω) of the environment oscillator with frequency ω defined
as

n(ω) ≡ 1
(eβω − 1) =

∑
n n e

−βωn∑
n e
−βωn . (C.6)
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Performing a Fourier transformation with respect to τ ≡ t− t′, we obtain

α(ω) = 2π
∑
µ

|kµ|2 [(n(ω̃µ) + 1) δ(ω − ω̃µ) + n(ω̃µ)δ(ω + ω̃µ)] (C.7)

By means of the relation n(−ω) = −[n(ω) + 1] and the definition

j(ω) =
∑
µ

|kµ|2δ(ω − ω̃µ), (C.8)

we can rewrite Eq. (C.7), reading as

α(ω) = 2π (n(ω) + 1) [j(ω)− j(−ω)] . (C.9)

Following Refs. [363, 384], we now define the spectral density J(ω) as

J(ω) = j(ω)− j(−ω) (C.10)

and obtain, after performing the inverse Fourier transform and rearranging using 1 + 2n(ω) =
coth[ω/(2T )], the standard expression [cf. Eq. (4.9)]

α(τ) =
∫ ∞
−∞

dω

2π e
−iωτα(ω)

=
∫ ∞
−∞

dω J(ω) [n(ω) + 1] e−iωτ

=
∫ ∞

0
dωJ(ω)

(
coth

(
ω

2T

)
cos(ωτ)− i sin(ωτ)

)
. (C.11)

This is the well-known result for a linearly coupled harmonic environment in thermal equilib-
rium, see Eq. (4.9).

C.2 Environment transformation
Here we show how the environment Hamiltonian HEII comprising both PM and bath is
diagonalized. That is, following Ref. [60], we rewrite Eq. (4.19) as

HEII = ā†Mā, (C.12)

where the vector ā contains all environment annihilation operators,

ā = (b, a1, a2, . . . , aN )T , (C.13)

and the matrix M all environment couplings and energies,

M =



Ω κ∗1 κ∗2 · · · κ∗N
κ1 ω1 0 · · · 0

κ2 0 ω2
. . . ...

...
... . . . . . . 0

κN 0 · · · 0 ωN


. (C.14)

The Hermitian matrix M can be diagonalized by means of a unitary transformation,

M = SDS†, (C.15)
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where the diagonal matrix D contains the eigenenergies of the composite bath,

D =

ω̃0 0
. . .

0 ω̃N

 . (C.16)

With these definitions, the new annihilation operators of the environment become c̄ = S†ā
where c̄ = (c0, c1, . . . , cN )T . The initial creation and annihilation operators are obtained from
the new ones via the inverse transformation ā = Sc̄. Note that for a discrete number N of aλ
operators there are N + 1 cµ operators.

C.3 Alternative derivation of the transformed BCF
In this section, we review a method alternative to the one introduced in Sec. 4.2.4 to calculate
the BCF for the two initial states introduced in Sec. 4.2.5 [Eqs. (4.23) and (4.26)] by calculating
the time dependence of the PM operator b not via diagonalization, but rather by means of its
Heisenberg equations of motion.

The Heisenberg equations of motion for the PM operator b can be easily derived by evaluating
the time derivative

∂tb(t) = ieiHEIIt[HEII, b]e−iHEIIt

= −iΩb(t)− i
∑
λ

κ∗λaλ(t), (C.17)

where the time dependence as before refers to the interaction picture with respect to HEII,
b(t) = eiHEIIt b e−iHEIIt, and b(0) = b. Likewise, for aλ we have

∂taλ(t) = ieiHEIIt[HEII, aλ]e−iHEIIt

= −iωλaλ(t)− iκλb(t). (C.18)

Formally integrating Eq. (C.18), we find

aλ(t) = e−iωλtaλ(0)− iκλ
∫ t

0
ds e−iωλ(t−s)b(s), (C.19)

which we can insert into Eq. (C.17), yielding

∂tb(t) = −iΩb(t)−
∫ t

0
ds
∑
λ

|κλ|2e−iωλ(t−s)b(s)

− i
∑
λ

κ∗λe
−iωλtaλ(0). (C.20)

Defining K(t− s) ≡
∑
λ |κλ|2e−iωλ(t−s), we can write the solution of Eq. (C.20) as

b(t) = U(t)b(0)− i
∑
λ

κ∗λaλ(0)
∫ t

0
dsU(t− s)e−iωλs, (C.21)

where U(t) is determined from the integrodifferential equation [385]

∂tU(t) = −iΩU(t)−
∫ t

0
dsK(t− s)U(s). (C.22)
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Note that U(t) is only defined for t ≥ 0, with initial condition U(0) = 1. Albeit for a
continuous bath spectrum an analytic calculation of U(t) for specific spectral densities is
possible via Laplace transforms [386], we focus on a numerical scheme for solving Eq. (C.22)
in the following, relying on numerical diagonalization.

To this end, we first define auxiliary coefficients Uλ(t) whose dependence on t is via a simple
exponential and the integration boundary only,

Uλ(t) = κλ

∫ t

0
ds e−iωλ(t−s)U(s). (C.23)

By means of this definition, we are able to cast Eq. (C.22) into a set of coupled equations,

∂tU(t) = −iΩU(t)−
∑
λ

κ∗λUλ(t), (C.24a)

∂tUλ(t) = κλU(t)− iωλUλ(t). (C.24b)

Introducing the vector ū(t) = (U(t), U1(t), . . . , UN (t))T , we can rewrite Eqs. (C.24) as

∂tū(t) = −iGū(t), (C.25)

with the matrix G given by

G =



Ω −iκ∗1 −iκ∗2 · · · −iκ∗N
iκ1 ω1 0 · · · 0

iκ2 0 ω2
. . . ...

...
... . . . . . . 0

iκN 0 · · · 0 ωN


. (C.26)

The Hermitian matrix G can be diagonalized via the transformation T †GT = D, yielding the
eigenvalues ω̄µ. Defining ū = T v̄, the differential equation (C.25) becomes

∂tv̄(t) = −iDv̄(t), (C.27)

which has the simple solution v̄(t) = e−iDtv̄(0) with v̄(0) = T †ū(0), where ū(0) = (1, 0, . . . , 0)T .
Taking the first component of the full expression ū(t) = Te−iDtT †ū(0), which gives U(t), and
writing [ū(0)]µ = δ0µ, we arrive at the simple expression

U(t) =
∑
µ

|T0µ|2e−iω̄µt. (C.28)

The above reformulation allows one to map the solution of an integrodifferential equation
onto an eigenvalue problem which involves only matrix multiplication and diagonalization,
which is numerically more robust with respect to the numerical time step than straightforward
numerical integration of Eq. (C.22). Note that this approach requires K(t− s) to be given as
a sum of exponentials that reproduce when being differentiated with respect to time.
We can now employ the above results to obtain alternative analytic expressions for the

BCFs of the two initial states introduced in Eqs. (4.23) and (4.26). For the factorizing initial
condition (4.23), the trace in Eq. (4.22) is readily evaluated, yielding

α(t, t′)/|g|2 = U(t)U∗(t′) (n(Ω) + 1) + U∗(t)U(t′)n(Ω)

+
∑
λ

|κλ|2
∫ t

0
ds

∫ t′

0
ds′
[
U(t− s)U∗(t′ − s′)e−iωλ(s−s′) (n(ωλ) + 1)

+ U∗(t− s)U(t′ − s′)eiωλ(s−s′)n(ωλ)
]
. (C.29)
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Here, n(ω) is the mean occupation number of the harmonic oscillator of frequency ω, as
introduced in Eq. (C.6).
For the diagonal initial condition (4.26), it is advisable to first linearly transform the

operators b and aλ into the eigenbasis of the joint environment, outlined in Appendix C.2.
We find

α(t, t′)/|g|2 =
∑
µ

|S0µ|2
[
U(t)U∗(t′) (n(ω̃µ) + 1) + U∗(t)U(t′)n(ω̃µ)

]
+
∑
λ,τ,µ

κ∗λκτSλµS
∗
τµ

∫ t

0
ds

∫ t′

0
ds′
[
U(t− s)U∗(t′ − s′)e−i(ωλs−ωτ s′) (n(ω̃µ) + 1)

+ U∗(t− s)U(t′ − s′)ei(ωλs−ωτ s′)n(ω̃µ)
]

+ i
∑
λ,µ

S0µS
∗
λµκλ

[
U(t)

∫ t′

0
dsU∗(t′ − s)eiωλs (n(ω̃µ) + 1)

+ U(t′)
∫ t

0
dsU∗(t− s)eiωλsn(ω̃µ)

]
− i

∑
λ,µ

S∗0µSλµκ
∗
λ

[
U∗(t′)

∫ t

0
dsU(t− s)e−iωλs (n(ω̃µ) + 1)

+ U∗(t)
∫ t′

0
dsU(t′ − s)e−iωλsn(ω̃µ)

]
. (C.30)

Note that the above results assume a Hermitian system operator L of the system-PM coupling
[cf. Eq. (4.11)].
The procedure allowing us to arrive at Eqs. (C.29) and (C.30) is straightforward: We (i)

derived the Heisenberg equations of motion for the PM operator, (ii) linearly transformed the
time-independent (t = 0) operators of the Heisenberg equations of motion into the operators
with respect to which the initial state is diagonal (cf. Appendix C.2), and (iii) evaluated
the trace of the BCF [Eq. (4.22)] in this basis. Analogously to the procedure described in
Sec. 4.2.4, the scheme sketched above can be generalized to, e.g., linearly coupled chains of
PMs with the last PM(s) possibly coupled to a terminating bath [37, 38], direct coupling of
PMs to independent baths [363], or a combination of both [39, 41]. Since the terminating
baths are usually taken to be independent, the BCFs of the PMs can be derived by successively
solving the Heisenberg equations of motion following the above approach. Starting at the PM
which is coupled to the system and subsequently transforming the PM and bath operators
into the basis in which the initial states are diagonal, the BCFs can be evaluated with respect
to the given initial states.
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